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ABSTRACT

Pacific Gas and Electric Company (PG&E) has
developed a regression-based procedure for disaggregat-
ing a seasonal runoff forecast into monthly flow fore-
casts. These forecasts can be used to estimate the
most likely or mean value for each month’s runoff, or
to estimate runoff for particular meteorological sce-
narios, given current conditions. Four basic seasonal-
to-monthly disaggregation model families were stud-
ied: (1) linear, (2) polynomial, (3) exponential, and
(4) logit. The logit model, which ensures that
monthly forecasts are always non-zero and less than
the forecasted seasonal volume, had larger or compa-
rable R? than the polynomial and exponential
models, so the latter two were dropped from further
analysis. A program was developed which considers
the linear and logit models with up to three expla-
natory variables: the total seasonal forecast, previous
month’s flow, and future monthly precipitation. It
can select, using standard statistical criteria, a model
reasonable for each site and season.

INTRODUCTION

operations schedule. Similar applications are described
in Johnson et al. (1991) and Staschus et al. (1989).
The seasonal-to-monthly disaggregation procedure is a
simple and quick alternative to more elaborate con-
ceptual runoff models such as the National Weather
Service River Forecasting System (Day, 1985),

which requires extensive calibration for individual
watersheds. This paper describes streamflow-forecast
disaggregation models which can automate the disag-
gregation of seasonal forecasts to monthly values.
Jacobs et al. (1993) describe the anticipated hydro-
scheduling system these forecasts would support.

We considered four basic seasonal-to-monthly
disaggregation model families. Each can be used to
estimate the most likely or mean value for month t's
runoff, given the total seasonal flow from month t
through July. Thus, given an April 1 seasonal fore-
cast, one of these models could be used to estimate
April's runoff. The April-through-July forecast would
then be decreased by the estimated April runoff yield-
ing the May-through-July forecast. The May-through-
July forecast would be the basis of the estimated May
streamflow, and so forth. This is simpler than the all-
at-once procedures described in Pei et al. (1987).

This process yields estimates of monthly flows in
April through June from an April-July forecast made

PG&E generates seasonal streamflow forecasts for
use in hydropower scheduling (Freeman, 1992).
Substantial effort at PG&E and elsewhere has gone
into the development of procedures for estimating the
total seasonal runoff from previous flows, snowpack
water content, and precipitation (Stedinger et al.,
1989 and 1992). These seasonal runoff forecasts are
subsequently disaggregated into monthly flow fore-
casts for use in PG&E's HYSS model (Ikura and
Gross, 1984), which derives a monthly hydropower
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on April I; July’s estimated flow would then be
found by difference. On May 1 a new forecast of May-
July flows would normally be available, and that
would be disaggregated into individual monthly flows
starting with the May disaggregation model.

In the next section the four basic model families
are introduced. The following sections summarize the
ability of those models to describe the observed rela-
tionships in the longer streamflow data sets available
for PG&E watersheds.




ALTERNATIVE SEASONAL-TO-
MONTHLY DISAGGREGATION MODELS

Several families of models could be used to divide
a seasonal streamflow forecast among the months
within the forecast period. Let

q¢ = the monthly flow in month t,

Q; = the forecast of the seasonal flow from
month t through July,

p¢ = the monthly precipitation in month t at
a nearby station, and

a, by, ¢ and d; = parameters of a disaggregat-
ion model.

Four families of disaggregation models were con-
sidered, each corresponding to a different functional
relationship between the forecasted runoff Q, and the
estimated runoff g for the month following the fore-
cast date. The model families are (i) linear, (ii) poly-
nomial, (iii) exponential, and (iv) logit. A propor-
tional model is a special case of all four families.
Each is described below.

Proportional Model

The simplest model one might consider would be
that a fixed fraction, or proportion a;, of the seasonal
flow Qq arrives in each month t:

qe=ag Q¢ ®

The residual seasonal flow (Q¢ - qy) is then the fore-
cast Q.1 which needs to be divided among the re-
maining months.

Linear Models

The proportional model in (1) will serve as our
base case. However, more sophisticated models can be
employed to account for the general delay in runoff
with an increase in the seasonal runoff volume. One
such model is:

qe=ag+ b Q¢ @

It may be tie case that ag is not significantly different
from zero, in which case the two-term linear model in
(2) reduces to the simpler model in (1).

One can also include a third term which reflects
whether current flow levels are relatively large or
small, which would reflect baseflow and groundwater
levels, whether the snowpack is beginning to melt, or
recent winter rainfall contributing to current stream-
flow levels. The linear model in (2) then becomes:
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Qe =ag+ b Qe +ce g1 3

Finally, a fourth term can be added to incorporate the
impact of precipitation p; in the current month:

Gr=ar+b Qe +cr Ge1 + de Pe @

Equation (4) is particularly attractive when py corres-
ponds to a precipitation scenario used to generate Q.

Polynomial Models

It is also important to consider the hydrology and
the physics of the situation. Certainly, if the seasonal
forecast were zero, then all of the monthly flows
should also be zero. Thus one might consider poly-
nomial models of the form:

q=Qlag+b Qe +ceqey +depd O

The terms by Qy, ¢ g1 and dy py within the brackets
might not be statistically significant; if all these
terms were dropped, this polynomial model would re-
duce to the proportional model in equation (1).

Exponential Models

A problem with the linear and polynomial model
families is that they could, in unusual situations
and for particular combinations of the parameters,
generate negative monthly flow forecasts. This is a
common problem with such linear and polynomial
models; it is also encountered in extremely dry years
with linear regression models that estimate seasonal
runoff volumes. A seasonal-to-monthly disaggregat-
ion model that does not suffer from that deficiency is
the exponential model:

qe = Qrexplag + bQ¢ + cqe-1 + dipd - (©)

Again, the second, third and fourth terms inside the
brackets may not be necessary. Were all of them
dropped, the exponential model would also reduce to
the simple proportional model in equation (1).

Logit Models

~The-exponential model in equation(6)-does not
generate negative flow estimates (for Q; > 0), but
could in unusual circumstances generate monthly
flows g which exceeded the specified seasonal total
Q. A logit model that ensures that the estimated
runoff ratio q/Q; for a month is between zero and
one, and hence that 0 < q; < Qy, is

qr = Q/(1 + explaptbQp+cg-1+dppd} (D




Again, the second through fourth terms may not add
significant forecasting power and could be omitted.
With this model, the ratio q/Qy is estimated by

{1+exp[xd}! ®

£
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f
;

x¢ = [ag + by Q¢ + ¢y g1 + de pil- ©

When the estimated ratio q¢/Qq is small, the exp[x]
term in (8) is substantially larger than one. In such
cases, the model in (7) will look and behave like the
model in equation (6), and to a lesser extent like the
model in equation (5). However, when the estimated
value of q/Q; approaches 50% or more, the logit
model in equation (7) begins to look like

qe = Q¢ {1 - explxd} (10)

so that q; approaches Q; for large negative x;.

MODEL COMPARISON

In the initial research on disaggregation models we
examined models that incorporate only information
known at the time of the forecast, i.e. the previous
flow q¢.1 and the total seasonal forecast Qy. These ini-
tial “screening tests” will be described first. On the
basis of these tests some models were judged to be

dominated by others and were dropped from further
consideration; the remainder were implemented in
general fitting and forecast programs currently in trial
use at PG&E.

Recently PG&E has been developing a stochastic
scheduling model that uses multiple inflow
the seasonal inflows in these scenarios depend on
anticipated seasonal precipitation, we investigated
whether including monthly precipitation in the disag-
gregation models would significantly improve their
explanatory power. That research is described in a
subsequent section.

Screening Test

Standard linear and non-linear regression proce-
dures were used to investigate which of these models
best described the relationships between the month t
through July runoff, Q;, and the observed flow in
month t, q;. Linear regression is adequate to estimate
the parameters of the linear and polynomial models,
whereas nonlinear regression was used to obtain least-
squares estimates of the exponential and logit models’
parameters without transformation of the flows.

In the initial screening test, the simple propor-
tional model in equation (1) and each of the four fami-
lies were considered, both with and without the ciqy.{
terms, but without including monthly precipitation
pt. The resulting models are listed in Table 1. Models
were developed for the months of January through
June for the 14 gage sites, listed in Table 2, which

Table 1. Models Considered in Regression Analyses

Abbreviation Functional Form Family
pl.2 qt= at Q¢ Proportional
LQ1’2 qt= ag+bgQ Linear
LQql2 qt= at+bQ+erqel Linear
LQp? qr= ag+by Qg+ crpt Linear
LQgp qt= ag+b¢Qp+ceqe-1 +dept Linear
pQ! ae= Q lac+brQd Polynomial
PQq! qr= Qlag+bt Q¢ +ctqt-1] Polynomial

“EQ! qt= Qexplat + by Qt Exponential
EQq! qr= Qgexplag + by Q¢+ ¢t qe-1] Exponential
NQl2 = Qu/ (1 +explag+ by Q) Logit
Nqu’ qt= Q¢/ {1+ explat+bt Q¢ +crqp-11) Logit
NQp qt= Qt/ {1 +explag+bg Q¢+ ct pil} Logit
NQqp? qt=" Qc/ {1+ explac+bQ+ceqe +depil} Logit

1 Included in initial screening test
2 Included in final model comparison
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Table 2. Sites Considered in Regression Analyses

Record!

D Name Screening Final
8105 Bucks Lake@Bucks Lake 1935-83 1935-92
8190 Lost Creek@Lost Creek Reservoir 1927-83 1940-92

215 North Yuba@Bullards Bar 1940-83 1940-92
8230  Canyon Creek@Bowman Lake 1931-83 1931-92
8245 South Yuba@Lake Spaulding 1929-83 1929-92
8330  North Fork Mokelumne@Salt Springs Reservoir 1937-83 1937-92
8345 Middle Fork Stanislaus@Beardsley Reservoir 1920-83 1922-92
8350  South Fork Stanislaus@Lyons Reservoir 1943-83 1943-92
8440  Eel River@Lake Pillsbury 1922-83 1922-92
8090  North Fork Feather@lake Almanor 1945-83 1945-92
8100 East Branch Feather@NF-51 1949-83 1949-92
8175 South Fork Feather@Little Grass Valley Res. 1948-83 1948-92
8265 Middle Fork American@French Meadows Res. 1951-83 1951-92
8280  Rubicon River@Hell Hole Reservoir 1947-83 1947-92

1 Initial screening used only flow records and was performed in 1985-87
Final model comparison used contiguous flow and precipitation records, performed in 1993.

had 33 or more years of record as of 1983 and were of
interest to PG&E.

Table 3 summarizes the average by month over all
14 sites of the R? values for each model considered.
In all cases R2 was calculated as

Ty (qyt - q’y\t )?
Zy (qyt - mean(qyp)?

R2=1- 1n

where q/y\t is the particular model's estimate of month
t's flow gy for cach ycar y of record. For the propor-
tional model at some sites, most notably in March
and April, the computed R? was negative. In those
cases the model Gyt ia[Qyt was not as accurate as
the constant model gy = mean.

There was great variability among the values of
R? for individual sites in the various months. The

Table 3. Average R2 Values from

average values in Table 3 and displayed in Figure 1
illustrate the general trends. The R? values in Table 3
are not corrected for the number of parameters esti-
mated. In many cases the models include parameters
which were not significantly different from zero.

An important issue is which of these nine models
are the best candidates to use in an operational setting
for disaggregating seasonal runoff forecasts. We
observed that the performance of the exponential
models (EQ and EQq) were almost identical with the
corresponding logit models (NQ and NQq), both on
average and at individual sites. In general, the perfor-
mance of the polynomial models (PQ and PQq) was
not quite as good as the corresponding logit models
(NQ and NQq). In addition, the logit models honor
the physical constraint that the runoff should be non-
negative and less than the seasonal runoff volume
forecast. Thus the logit models were judged as domi-

Screening Test Based on Data Through 1983

Model Jan. Feb. March April May June
P 0.29 0.34 0.27 0.01 0.73 0.962
1Q 0.31 0.36 0.36 0.37 0.84 0.971
PQ 0.30 0.36 0.33 0.37 0.84 0.977
EQ 0.31 0.36 0.35 0.43 0.87 0.977
NQ 0.31 0.36 0.35 0.43 0.87 0.976
IQq 0.35 0.38 0.38 0.40 0.86 0.975
PQq 0.34 0.38 0.35 0.44 0.87 0.979
EQq 0.34 0.38 0.37 0.47 0.88 0.979
NQq 0.34 0.38 0.37 0.46 0.88 0.978
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nating the corresponding members of the exponential
and polynomial families. On the other hand, while
the linear models (LQ and LQq) performed worse on
average than the logit models, there were clear instan-
ces in which they were superior.

For March and April forecasts, the proportional
model (P) often had a negative R value indicating
that simply setting El\t to the mean would predict bet-
ter than the proportional model. This makes sense: a
deeper snowpack tends to ripen later, so streamflows
early in the melt period may actually be less in a “wet
year” than in an average or dry one. Prior to the melt,
flows are more dependent on (warm) precipitation so
wet years tend to have higher monthly flows; later in
the melt period the correlation is positive as well.

PG&E’s DFIT program considers six models as
candidates for estimatin,g q¢. These six include the
simple constant model q; = mean, which is considered
to be a 1-parameter linear model, and the 2- and 3-pa-
rameter linear models (LQ and L.Qq). Also included
are the two nonlinear logit models (NQ and NQg), and
the proportional model (1), whigp can be thought of
as the 1-parameter logit model: q; = Q¢/{1+explad}.
These models have been used on a trial basis to guide
streamflow forecasting at PG&E since 1992.

Including Monthly Precipitation

Under ordinary circumstances, variables whose
values are unknown at forecast time would not be
included in a forecasting model. However, future
precipitation is often included in seasonal streamflow
forecasts. In the case of streamflow disaggregation
models, the inclusion of future precipitation can serve
two useful purposes. First, it allows for efficient
generation of “what if” inflow scenarios - €.g., what
would streamflows be like if the rest of the spring
was like the year 1977. Second, it allows the model
to distinguish between snowmelt from the currently-

measured snowpack and runoff from rain or snow that
falls later in the spring. Thus a model that includes
monthly precipitation may be more accurate in
predicting the expected runoff from a heavy or light
pack (assuming mean future precipitation) than one
that does not.

The effect of including monthly precipitation pt in
disaggregation models was examined using records
through 1992; see Table 1. Table 4 and Figure 2
report the results. The new linear models LQp and
LQgp and non-linear logit models NQp and NQqgp
were compared to the linear and logit models currently
in use (including the proportional model P).

A number of results are quite striking. First, in-
cluding current monthly precipitation p; in both lin-
ear and non-linear models increased the R? dramati-
cally in January and February, and to a lesser extent
in March and April. The effect of including previous
flow q¢.1 was less dramatic in these months, but of-
ten significant. In May and June, monthly precipita-
tion was rarely of much value while previous flow
had a somewhat greater impact. In these months the
disaggregation models worked very well, with average
R? for the logit models close to 90% in May and
98% in June. Thus the May and June runoff volumes
can be estimated quite accurately given the volume of
runoff to actually occur during the May-July or the
June-July period.

The month at the start of the melt period, April, is
anomalous in that neither previous flows nor current
precipitation add much to forecast precision and the
overall R2 is less than 50% on average. Part of the
reason is that precipitation generally tails off in April
and May. Thus temperature must account for much of
the unexplained variation in these months. In addi-
tion, in April a very heavy pack may yield small
flows because it takes longer to ripen, while a very
light pack may do the same because much of the

Table 4. Average R2 Values from Final Comparison Based on Data Through 1992.

Model Jan. Feb. March April May June

P 0.324 0.364 0.242 -0.100 0.781 0.966
56 0.344 0.376 - 0.312 0.366 0.860 0.973
NQ 0.338 0.381 0.319 0.422 0.891 0.979
1Qq 0.388 0.390 0.405 0.414 0.880 0.976
NQq 0.374 0.398 0.406 0.458 0.905 0.981
LQp 0.560 0.520 0.401 0.407 0.867 0.974
NQp 0.624 0.606 0.443 0.473 0.905 0.980
LQqgp 0.614 0.541 0.488 0.453 0.884 0.976
NQap 0.682 0.626 0.518 0.507 0.914 0.982
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snow-covered area disappears quickly. While the logit
model can mimic this behavior somewhat, a different
form of non-linear model might perform better. Later
in the melt in May and June, the rate of snowmelt is
more directly related to the total remaining runoff Q;
because the pack has already ripened and the primary
determinants of snowmelt would be temperature and
snow-covered area, which is related to anticipated
runoff volume. All of the disaggregation models
perform well in May and June.

CONCLUSIONS

For the months of January through April, given a
perfect seasonal runoff forecast and precipitation
forecast at the beginning of a month, the actual flow
in that month can be estimated by the better models
with an average R2 of 50-70%. Monthly precipitation
has a particularly strong impact on the accuracy of the
estimate in January and February. The results also
illustrate the value of using a reg/r\ession model. In
many months the simple model q; = aQ¢ yields R?
values substantially smaller than those achieved by
the more general linear and logit models. Thus there
is value in using a model with some sophistication.

Still, the large residual or unexplained variation
with the better models indicates that years with the
same or nearly equal seasonal forecasts may experi-
ence very different runoff patterns. Thus attempts to
use the runoff pattern from a particular historical year,
which had a scasonal forecast roughly equal to the
~ current year's forecast, may not yield the best or even

particularly reasonable cstimates of this ycar's runoff
pattern, given the anticipated runoff volume Qy,
monthly precipitation p; and antecedent streamflow
levels g¢.1. There should be value in using disaggre-
gation models which generate an average runoff pat-
tern, based upon all of the available years of record,
and the current hydrologic conditions.

The logit models yielded an average R2 of 89-91%
for May and 98% for June. In these two months all
the multi-parameter models provide very accurate
runoff predictions, given a perfect seasonal forecast.

Meteorological variables have much less impact on. .
the monthly pattern of runoff this late in the season.

_ Apart from the months of March and April, the
models that include monthly precipitation had satisfy-
ingly high R2. Thus a monthly disaggregation model
could be used as a simple alternative to the National
Weather Service’s Extended Streamflow Prediction
procedure (Day, 1985) to generate scenarios of in-
flows given current conditions and assumptions about
future weather. However, it should be noted that the

accuracy of a monthly forecast based on assumed pre-
cipitation values will not approach the R? cited here
unless the weather forecaster is gifted with perfect
foresight. For the months of March and April, where
R2 was relatively low, the models might benefit from
terms including monthly average temperature.
Disaggregation models that include temperature are
currently under development,
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