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1.0 Abstract.

We present results of an investigation into the effect of increasing spatial and temporal res-
olutions on modeled distributions of SWE and snowmelt in the Emerald Lake Watershed
of the Sierra Nevada of California, U.S.A. We used a coupled remote sensing/distributed
energy balance snowmelt model (SNODIS), and used previously validated results from a
high spatial (30-m) and temporal (hourly) resolution model run in ELW as a control. We
selected spatial resolutions that are commensurate with standard product DEMs or with
existing or planned satellite remote sensing data, and temporal resolutions that are factors
of typical operational intervals for meteorological data. We de graded the spatial resolution
of the DEM from 30 m to 90, 250, and 500 m prior to computing the distributed microme-
teorological data. We degraded the classified remote sensing data to the same spatial reso-
lutions prior to computing the duration of the snowcover. Similarly, we degraded the
temporal resolution of the micrometeorological data from 1 hour to 3 and 6 hours prior to
computing the distributed energy balance and snowmelt. We compared mean basin SWE,
basin snowpack water volume, and the spatial patterns of SWE from each test to our previ-
ous, high-resolution results. We found no significant differences between the mean basin-
wide SWE computed from the 250-m and 500-m spatial resolutions and that of our hi gh-
resolution control, regardless of temporal resolution. At each temporal resolution mean
basin SWE was over-estimated at the 90-m resolution by 14-17%. Coarsening of the spa-
tial resolution did resutt in a loss of explicit information regarding the location of SWE in
the basin, as expected. We discuss these resuits in terms of their implications for applying
the SNODIS model to larger regions.
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'2.0 Introduction

Although the importance of water stored in mountain snowpacks is widely recognized,
we lack adequate methods of assessing the magnitude of this resource and forecasting its
release over time. Simple empirical techniques have been used operationally to estimate
the volume of snowmelt runoff for over forty years with reasonable success, but they gen-
erally provide little information about the timing or rate of snowmelt runoff. A major limi-
tation of such empirical techniques is their dependence on boundary conditions governing
the development of calibration parameters. This dependence may cause such methods to
fail in extreme or unusual years, which often are the years of particular interest. In the cal-
ibration phase of conceptual snowmelt-runoff models, parameters are typically optimized
to produce good fits between observed and simulated streamflow. Since many factors
influence streamflow besides SWE and snowmelt characteristics, such models are forced
to accommodate a variety of possible biases built into the model parameters. This can
result in false compensation of incorrect estimates of SWE and snowmeit by model
parameters related to other processes. A third limitation common to most empirical SWE
and snowmelt models a dependence on a small number of ground SWE observations
within a basin of interest, and the degree to which those observations may or may not be
representative of the snowpack conditions elsewhere in the basin.These examples are but
some of the many problems and difficulties associated with current operational snowpack
assessment and snowmelt-runoff forecasting techniques.

To help address these problems, we developed a physically based, spatially distributed
model] to estimate the spatial distribution of SWE and snowmelt in mountain basins (SNO-
DIS) [Cline, Bales, and Dozier, 1997]. The SNODIS model couples remotely sensed snow
cover duration information with a spatial energy balance model to back-calculate, at the
end of a snowmelt season, the distribution of SWE at peak accumulation and the distribu-
tion of snowmelt through the season. The SNODIS model is based on the simple concep-
tual idea that the duration of snowcover during the ablation season at a particular location
is a function of 1) the amount of SWE at that location at the beginning of the ablation sea-
son, and 2) the energy available to melt the snow through the course of the season. SNO-
DIS uses a time series of remotely sensed imagery to determine the duration of snow cover
on every pixel, and uses a spatial energy balance model to determine how much energy is
available to melt snow over time. Shortwave and longwave radiation exchanges, and tur-
bulent energy exchanges are modeled at every pixel. The SNODIS model provides an esti-
mate of the distribution of SWE without ground observations of SWE or discharge
measurements. Thus it provides an independent, physically based estimate of the distribu-
tion of SWE and snowmelt that could be used to improve estimates of water resources
stored in mountain snowpacks, to improve estimates of the timing, rate, and magnitude of
snowmelt runoff, and to provide SWE information to assist calibration of operational con-
ceptual snowmelt-runoff models.

Our initial test of the SNODIS model was at the Emerald Lake Watershed (ELW) in
the Sierra Nevada of California [Cline, Bales, and Dozier, 1997]. We tested SNODIS
under conditions of high spatial (30-m) and high temporal (hourly) resolutions. We found
that under these conditions SNODIS produced an estimate of the magnitude and distribu-
tion of SWE at peak accumulation that compared well with results from previous methods,
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snow course data, and to models of SWE based on field measurements. We statistically
compared the mean and variance of the SNODIS-modeled SWE distribution to 180 snow
course measurements in the basin [Melack, et al., 1996] and found no significant differ-
ences. We compared the modeled spatial patterns of SWE to measured patterns from pre-
vious years [Elder, Dozier, and Michaelson, 1991}, and found only small differences that
would be expected from interannual variations in SWE distributions. We compared the
SNODIS-modeled total basin SWE volume to results from a binary regression tree SWE
distribution model that is based on field measurements, and that had been successfully
developed and tested in the same basin (SWETREE) {Elder, 1995; Elder, Michaelson, and
Dozier, 1995]. The total basin water volume stored as snow agreed within 1% between the
two methods. Based on these initial successful results and the physical nature of the
model, we concluded that SNODIS should be applicable over larger mountain regions.

As a first step towards extending the SNODIS model to larger regions, this paper eval-
uates the effects of increasing spatial and temporal resolutions on distributions of SWE
and snowmelt modeled by SNODIS. Larger resolutions would be desirable for regional-
scale modeling principally to reduce computational and data requirements, particularly for
operational applications, We tested spatial resolutions that are commensurate with stan-
dard product DEMs or with existing or planned satellite remote sensing data, and temporal
resolutions that are factors of typical operational intervals for meteorological data. The
successful results under high-resolution conditions permit us to treat the ori ginal model
run as a control against which we can compare new model runs that test conditions of
coarser spatial and temporal resolutions.

3.0 Methods

- We used the original, high-resolution (30-m spatial resolution, hourly temporal resolu-
tion) SNODIS results for the 1993 water year at ELW [Cline, Bales, and Dozier, 1997] as
a control against which to compare resuits of this sensitivity study. ELW is a small (120
ha) high alpine basin in Sequoia National Park, Sierra Nevada, California (Figure 1). Ton-
nessen [1991] describes the watershed in detail. In the original high-resolution study, we
mapped fractional (sub-pixel) snowcover at three dates using Landsat TM and the spectral
unmixing algorithm of Rosenthal and Dozier {1996]. We modeled hourly incident solar
radiation using a two-stream radiative transfer model for rugged terrain (TOPORAD)
[Dozier and Frew, 1990]. We extrapolated hourly air temperature, relative humidity, and
wind speed across the basin from a micrometeorological instrument site located near the
outlet of the basin using a 30-m DEM. We modeled incident longwave radiation as a func-
tion of the previously extrapolated air temperature and relative humidity using the Idso2
formulation (Idso, 1981]. We considered the energy balance of the snowpack each hour at
each pixel as

AQstAQm =K* +L* + Qg+ Qg + Qg + Qg (EQ 1)

where AQyg is the convergence or divergence of sensible heat fluxes within the snowpack
volume, AQy, is the change in latent heat due to melting or freezing, K* is the net short-
wave radiation flux, L* is the net longwave radiation flux, Qy is the sensible heat flux, Qe
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FIGURE 1. Map showing Emerald Lake watershed study area.

is the latent heat flux, Qg is the ground heat flux, and Qp, is the heat advected by precipita-
tion. If the snowpack is below 0°C, changes in the residual energy term AQg+AQ) result
in a temperature change within the snowpack. If the snowpack is at 0°C, net energy losses
will cool the snowpack while net energy gains will result in snowmelt. We considered the
ground heat flux to be negligible, and precipitation recorded during the modeling period
was also negligible. We modeled the turbulent fluxes using the bulk aerodynamic algo-
rithms in SNTHERMS89.rev4 [Jordan, 1991]. To solve the terms on the right side of EQ. 1
we made assumptions concerning the change of albedo over time, snow surface tempera-
tures, snow emissivities, and the roughness length of the snowpack [Cline, Bales, and
Dozier, 1997]. We computed a running total of the residual energy term AQS+AQM for
each pixel to provide a value for the total energy available to melt snow at each time step.
At the time of each remote sensing scene, the total energy for snowmelt at each pixel was
weighted by the fractional area of the pixel that had become snow-free since the previous
remote sensing date, and converted to mass units to determine the amount of SWE that
would have existed on that fraction of the pixel at the beginning of the model run.

In this study we duplicated the methodology used by Cline, Bales, and Dozier [1997]
with the exception that we systematically modified the spatial and temporal resolutions of
the data used in the model to perform a series of sensitivity tests. We degraded the spatial
resolution of the DEM from 30 m to 90, 250, and 500 m using a nearest-neighbor algo-
rithm prior to computing the distributed micrometeorological data (Figure 2). This
approach mimics a surface sampling approach commonly used in photogrammetric DEM
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FIGURE 2. Views of degraded DEM data: a) 30-m resolution, b) 90-m, c¢) 250-m, and d)} 500 m. The
views are looking from the north-northwest to the south-southeast.

production. We degraded the classified remote sensing data to the same spatial resolutions
prior to computing the duration of the snowcover. Since these data lie in a range from 0 to
1, a spatial averaging algorithm was used which resulted in the new, larger pixels having a
fractional snowcovered area equal to the sum of the snowcovered areas of the smaller
component pixels. We degraded the temporal resolution of the micrometeorological data
from 1 hour to 3 and 6 hours prior to computing the distributed energy balance and snow-
melt. We simply discarded the unneeded observations, retaining every third or every sixth
observation (beginning at midnight) accordingly. Since the recording and averaging for-
mats and intervals of meteorological data are variable, we considered this method of
degrading the temporal resolution representative of the crudest data likely to be used.

We completed a total of nine tests, estimating the distribution of SWE and snowmelt
for each paired combination of 90, 250, and 500 spatial resolutions and 1, 3, and 6 hour
temporal resolutions. For each test, we compared the mean basin SWE (SWE), the total
basin volume of SWE, the spatial pattern of SWE, and modeled snowmelt to the results
from the 30-m, hourly control test described above.
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4.0 Results

4.1 Mean and Variance of Estimated Basin SWE

Summary statistics describing the test estimates of SWE are shown in Table 1. All tests
resulted in a reduction in the range of estimated SWE values within the basin; the lower
values were particularly affected. Two-tailed t-tests were performed for each test to deter-

TABLE 1. Summary statistics of basin-wide SWE for the control and each test.

Spatial Temporal Percent | Standard | Minimuvm | Maximam
Resolution | Resolution | SWE | Difference | Deviation SWE SWE
(m) (hr} (m) (%) (m) (m) (m)
30 1| 213 0.54 0.20 3.80
90 1 2.50 +17.0 0.30 1.29 3.56
90 3 2.43 +14.2 0.29 1.28 344
90 6 242 +13.6 0.29 1.21 3.55
250 1 2.18 0.7 0.21 1.54 237
250 3 2.06 -34 0.21 1.51 2.30
250 6 2.07 -3.0 023 1.47 2.34
500 1 2.03 4.6 0.29 1.59 2.31
500 3 1.97 -7.3 0.28 1.54 224
560 6 2.10 -1.5 0.30 1.62 243

mine whether the test SWE was significantly different from the control SWE of 2.13 m
(Hy: SWE ., = 2.13 m, 5% significance level), The null hypothesis was rejected in the
three tests at 90-m spatial resolution, indicating that the estimated means of 2.42-2.52 m
were statistically different from the control. All the remaining tests failed to reject the
null hypothesis. Therefore at 250-m and 500-m spatial resolutions, for all three temporal
resolutions, the model estimated the correct SWE. F-tests were performed to determine

whether the variance of basin SWE (0%,,.) of each test was significantly different from

the variance of the control of 0.029 m? (Ho: ozswe =(0.54 m)z, 5% significance level). The
null hypothesis was rejected in all cases except the three at 500-m spatial resolution. At
500-m resolution, the degrees of freedom in the F-tests were substantially reduced from
the other cases, permitting a larger value of Fyy.,. Nonetheless, the F-tests suggest that

the variance of estimated basin SWE was the same at the 500-m spatial resolution as at the
30-m resolution.

4.2 Total Basin Water Volume Stored as SWE

The estimated total volume of water stored as SWE in the basin from each test was
computed by summing the volume on each pixel within the basin, and is compared to the
control value in Table 2. Changes to the raster depiction of the basin boundaries at coarser
spatial resolutions resulted in larger estimates of the basin area at the coarser spatial reso-
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lutions. As a resuit, the estimnated total basin SWE volume was affected. Note that the esti-

TABLE 2. Comparison of estimated total basin SWE volume to control.

Spatial Temporal Total Basin Percent Basin Correcied
Resolution { Resolution | SWE Volume | Difference | Difference Area SWE Volume
(m) (hr) ) (m?) (%) (m?) (m?)
30 i 2,740,000 -- -- 1,286,100 2,740,000
90 1 3,255,100 +515,100 +18.7 1,304,100 3,210,170
90 3 3,174,192 +434,192 +15.8 1,304,100 3,130,380
90 6 3,158,543 +418,543 +15.3 1,304,100 3,114,947
250 1 3,308,790 +568,790 +20.8 1,562,500 2,723,484
250 3 3,216,719 +476,719 +174 1,562,500 2,647,694
250 6 3,231,047 +491,047 +17.9 1,562,500 2,659,487
500 i 3,049,870 +309,870 +11.3 1,500,000 2,614,962
500 3 2,956,935 +216,935 +7.9 1,500,000 2,535,276
500 6 3,150,750 +410,750 +15.0 1,500,000 2,701,453

mated total basin SWE volume normalized by the basin area for the respective spatial

resolution is equal to the SWE shown in Table 1. Thus the apparent over-estimation of the

total basin SWE volume in each of the tests is solely an artifact of the raster delineation of
* basin boundaries in those cases where the estimated SWE was less than the control. When
- the SWE volumes are corrected by normalizing for the high-resolution basin area (Table

2), the problem is corrected for the tests at 250-m and 500-m. These results are shown to

illustrate this potential problem that could be encountered when modeling at regional

scales. In this case, the problem could be easily corrected by using a vector basin bound-
‘ary delineation to determine the total basin SWE volume.

4.3 Comparison of Spatial Patterns of SWE

Coarsening the spatial resolution of the model resulted in increasing losses of informa-
tion about the location of SWE in the basin (Figure 3). To facilitate comparison, the resuits
shown here are standardized to zero mean and unit variance so that each image is dis-
played with the same grayscale. At each spatial resolution, changes in temporal resolution
had only negligible effects on the spatial patterns of SWE, so are not shown here, The 30-
m control image (Figure 3a) shows areas of low SWE on the steep ridge forming the
southern and western boundary of the basin (A1, 2), on the ridge forming the extreme
northeast boundary of the basin (A3), and on steep cliff bands midway up the basin (A4).
Areas of large SWE include flatter areas at the base of steep slopes (A5), on the valley
floor (A6), in a protected area in the upper reaches of the watershed (A7), and on a broad
bench on the western side of the basin (A8).

At 90-m resolution (Figure 3b), the areas of low SWE are still located along the steep
ridges (B1), but to a lesser extent, and on some of the cliff areas in the lower part of the
basin (B2). The smaller areas of low SWE in the control, such as on the intermediate cliff
bands, are not estimated at this resolution. Areas of large SWE include the protected
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FIGURE 3. Modeled SWE distributions at a) 30-m resolution (control), b) 90 m, ¢) 250 m, and d)
250 m. These results are for the 1-hr temporal resolution; differences between these patterns and
the patterns for the 3-hr adn 6-hr resolutions are negligible. Results are standardized to zero mean
and unit variance to facilitate comparison; the grayscale shown is in units of standard deviations
away from the mean. The key labels are described in the text.

region in the upper reaches of the basin (B3) and the broad bench on the western side of
the basin (B4). SWE is overestimated on the ridge top itself (B5). Here slopes are flatter in
the 90-m model, and as a result are estimated to receive more solar radiation. With more
apparent energy available during the same period of time, the model estimates greater
SWE. SWE is underestimated on the valley floor (B6).

At 250-m resolution (Figure 3c), areas of lowest SWE remain on the extreme northeast
and west ridges (C1), and to a lesser extent along the southeast ridge (C2). At this resolu-
tion the model estimates less-than-average SWE across the mid-elevations of the basin
(C3), in roughly the same location as the low-SWE areas on the cliff bands in the control
image. The protected area in the upper reaches of the basin still are estimated to contain
larger amounts of SWE (C4), and large SWE values are estimated on the valley fioor (C5).
With respect to the iower amounts of SWE in the vicinity of the cliff bands and the
increased SWE on the valley floor, the results of the 250-m resolution model more closely
resemble the controf than the 90-m results.
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At 500-m resolution (Figure 3d), the depiction of SWE only crudely resembles the
control image. Low SWE areas correctly include the western and southeastern ridges, but
because of the large grid scale these low-SWE areas are extended too far downslope into
areas of the basin that should contain larger SWE amounts (D1). Areas of larger SWE cor-
rectly include the valley fioor (D2), such as it is depicted at 500-m, and the protected area
in the upper reaches of the basin (D3).

4.4 Effect of Spatial and Temporal Resolution on Modeled Snowmelt

The correct estimation of SWE implicitly suggests that snowmelt modeled at each
pixel from the energy balance is correct, but it is possible that compensating errors over
the course of the snowmelt season could produce the same result. To simplify evaluation
of distributed snowmelt modeled at the coarser spatial and temporal resolutions, we com-
puted the basin-wide hourly energy balance, converted these hourly totals to mass units,

and normalized the resnlts to 2 common basin area of 1,286,100 m? of the control (Figure
4). The coarser temporal resolutions clearly result in poorer representations of the diurnal
snowmelt cycle, although the modeled snowmelt values generally follow the control val-
ues at all spatial and temporal resolutions. Hourly root mean squared errors (RMSE) for

TABLE 3. RMSE of modeled hourly snowmelt compared to control.

1-hr Tests 3-hr Tests 6-hr Tests
Spatial RMSE Spatial RMSE Spatial RMSE
Resolution (m? by Resolution (o hr') Resolution (m° hrl)
90 m 716 S0 m 1393 90 m 2315
250 m 608 250 m 1343 250 m 2134
500 m 620 500 m 1389 500 m 2122
Mean: 648 Mean: 1375 Mean: 2190

snowmelt are roughly equivalent at each spatial resolution, but increase with increasing
temporal resolutions (Table 3). This is apparent in Figure 4, where the longer time steps
result in greater departures from the contro} values, especially during the morning.
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FIGURE 4. Examples of three days of modeled snowmelt at a) 1-hr temporal resolution, b} 3-hr,
and ¢) 6-hr: The control values are shown in each plot for comparison.

5.0 Discussion and Conclusions
The evidence from the sensitivity analysis presented here strongly indicates that the

distribution of SWE and snowmelt can be rigorously estimated using the SNODIS model
at spatial and temporal scales conducive to regionai-scale modeling. If the objective is to
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determine the total volume of SWE contained in a basin, reasonable results should be
expected using 500-m and 6-hour resolutions. If details of the diurnal timing of snowmelt
are required, the 6-hour data may be too crude, at least as far as the degradation method
we used here is concerned. Averages, or shorter time steps would be warranted in that
case. It is important to realize that the ELW test basin is very small, and contains a limited
distribution of topographic characteristics, most notably aspect. The small basin size
becomes a concern at the larger spatial resolutions tested, such as the 500-m resolution
where only six grid cells depict the basin. Therefore we view these results as an encourag-
ing proof-of-concept, but see a need to test the SNODIS model in a similar fashion over a
larger test area. In addition to the study area size, other questions were raised during this
study that pertain to the application of this approach over large regions.

Of particular interest is why SWE was overestimated at the 90-m resolution but cor-
rectly estimated at the larger resolutions. The 90-m resolution resuits were statistically dif-
ferent from the control mean, although the differences were perhaps not unreasonably
large at 14-17%. Increasing the spatial resolution tended to reduce the elevations of the
peaks along the southern and eastern ridges of the basin, effectively smoothing the sharp
ridge to varying degrees (e.g. Figure 2). Some of the steeper, northerly-facing slopes were
reduced as a result, which tended to increase the modeled insolation on these areas. This
would tend to increase estimated SWE in the SNODIS methodology. However, this effect
occurred at each of the larger spatial resolutions, and the least of this effect was observed
in the 90-m case. It is possible that the differences between the 90-m tests and the others
are simply a result of the particular coincidence of slopes, aspects, elevations, and snow
cover duration that resulted from the spatial resampling to each resolution. Further evalua-
tion of this possibility will require tests to be performed in a larger study area exhibiting a
greater range of topographic characteristics. A second possible explanation is a hypothesis
that somewhere between 90-m and 250-m a scale threshold exists, below which represen-
tation of explicit spatial patterns of the relevant variables strongly matters, and beyond
which the explicit distribution of the governing variables becomes relatively unimportant.
This would be consistent with the representative elementary area (REA) concept presented
by Wood et al. [1988] for catchment-scale storm response modeling. Although our scale
sensitivity tests employed a different spatial aggregation approach from theirs, fundamen-
tally our tests represent a similar shift from modeling (snowmelt) processes using explicit
spatial detail to modeling them using statistical distributions, If such an REA for snowmelt
processes exists, it may actually be preferable to apply the SNODIS model] at larger
regions using coarser resolution governing data. We cannot conclude the existence of an
REA for snowmelt modeling from testing only four spatial resolutions. Additional investi-
gation, again preferably in a test basin with a broader range of conditions, will be neces-
sary in order to address this hypothesis.

Our method of resampling the sub-pixel fractional snow cover products ensured that
the same amount of snow covered area existed in the larger pixels as in the total of the
incorporated smaller pixels. This effectively synthesized a sub-pixel snow fraction product
a spectral mixture model snow classification scheme might produce from a coarser resolu-
tion sensor. The 250-m and 500-m test resolutions correspond to product resolutions that
will be available on the MODIS sensor, planned for launch on the EOS AM-1 spacecraft in
June, 1998. The MODIS data should support the determination of sub-pixel snow cover
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mapping. An assumption in the SNODIS modeling approach that we did not address here
is that the gradual reduction in snow cover fraction over time represents a patch of snow
becoming smaller but otherwise not changing locations within a pixel. This assumption
seems reasonable for small pixels, such as the 30-m or even the 90-m resoiutions, but it
may become questionable for larger pixel sizes. The assumption apparently was sufficient
in these tests, but further analysis is warranted before presuming that larger resolution
remote sensing data will be suitable for driving SNODIS.
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