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ABSTRACT 

Recent experiments have explored the potential of using airborne wide-band snow radar 

observations to estimate snow accumulation. Most if not all experiments have focused on sea ice 

applications with a series of campaigns conducted by Operation Ice Bridge (OIB) successfully 

demonstrating the applicability of wideband observations (2-8 GHz) to estimate snow on sea ice. 

Most applications of the wideband approach for terrestrial snow applications have been conducted 

using ground-based systems. However, in 2019 a wideband radar system (2-18 GHz) was flown 

over Trail Valley Creek in the North West Territories, Canada coinciding with ground-based field 

measurements of snow depth and SWE properties from a range of measurement systems. This paper 

describes the application of the using the interface-based pulse peakiness snow depth retrieval 

method to estimate snow on land. The approach was tested on the six major vegetation types present 

at the study area (white and black spruce trees, tall shrub, riparian shrub, dwarf shrub, tussock, and 

lichen). Snow depth derived from Airborne Laser Scanner (ALS) point clouds was used as the 

reference for snow depth retrieval. To address the differences between snow on land and on sea ice, 

a recalibration of the algorithm parameters was completed as well as introducing additional 

measures to screen abnormal observations with a low Signal to Noise Ratio. It was concluded that 

the principles behind the pulse peakiness approach was generally valid for tundra snow depth 

estimates at study sites characterized by smooth and low slope surfaces and with low stand 

vegetation. The presence of surface vegetation and increased surface roughness led to increased 

complexity of radar waveforms, which resulted in increased snow depth retrieval uncertainty. 

 

 

INTRODUCTION 

 
Seasonal snow is an essential component of the hydrologic cycle, where changes in snow cover 

and distribution can have significant impacts on precipitation, wildlife, and water supply. In 

addition, variations in snow cover can serve as an indicator for climate change (Croce et al., 2018). 

A timely accurate estimate of snow depth or snow water equivalent (SWE) can be used for 

hydrology and climate modeling, managing local water supply, as well as presenting a quantifiable 

parameter that responds to climate change.  

 

It is because of the necessity of snow monitoring that the methods for snow depth / SWE estimates 

have been developed throughout the years. While field measurements or records from weather 

stations are known to be reliable, they are localized in representativeness and so to cover the vast 

areas around the globe, remote sensing technology including passive and active microwave sensors 

have been utilized along with numerical models. 
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More specifically for snow depth or SWE retrieval using active sensors, there have been 

experimental observation methods developed utilizing radar systems at Ku or X band (Yueh et al., 

2009; Oveisgharan et al., 2020; Leinss et al., 2015). As explained by Leinss et al. (2015) and 

Oveisgharan et al. (2020), it is possible to retrieve SWE with the interferometric phase differences 

between two measurements at specific frequencies, especially at L-band. Cui et al. (2016) proposed 

using Synthetic Aperture Radar (SAR) observations at Ku and X band coupled with a backscatter 

forward model to estimate the optical thickness of the snowpack. By contrast, Operation Icebridge 

(OIB) deployed an experimental wide band radar with a frequency range of 2-8 GHz which differs 

from the radar systems used by Leinss et al. (2015) and Cui et al. (2016) in that the frequency of the 

transmitted signal is constantly modulated. In addition, various other FMCW radar systems have 

also been used for SWE retrieval and snow stratigraphy measurements (Marshall and Koh, 2008). 

However, as those mostly ground-based FMCW radar systems are not the focus of this paper, a wide 

band radar here is specifically defined as an airborne FMCW radar capable of operating in a wide 

bandwidth similar to the ones used in OIB and AWI Icebird campaigns. 

 

Currently, most snow depth retrieval algorithms using data collected by a wide band radar are 

based on obtaining two crucial interfaces, air-snow interface, and snow-ice / snow-ground interface 

(Kwok et al., 2017). As OIB which provided a large percentage of the data used for developing 

various retrieval algorithms is focused on offering detailed information about polar ice, most of 

these retrieval methods are for snow on sea ice. According to Kwok et al. (2017), the difference 

amongst these algorithms mainly lies in how the two interfaces are obtained and how they are 

optimized for a specific radar system. Kurtz and Farrell (2011) and Kurtz et al. (2013) proposed an 

interface identifying method that combined searching for local maximum and empirical 

thresholding, which was adopted by the National Snow and Ice Data Center (NSIDC). Later on, a 

waveform fitting method was developed by Kurtz et al. (2014) where a physical model was 

established to simulate wide band radar waveforms over sea ice and the two interfaces were obtained 

by fitting data to the model. In addition, a retrieval based on the gradient of radar intensity return 

was adapted from Koenig et al. (2016) and tested in Kwok et al. (2017). In comparison, Newman 

et al. (2014) took a slightly different approach that avoided the need for fixed sets of thresholds used 

by several previously mentioned methods. As demonstrated by Newman et al. (2014) and Kwok et 

al. (2017), a Haar-CWT was utilized to detect abrupt changes within the waveform and those 

identified abrupt transitions were used to determine the two interfaces under specific criteria. To 

cope with the gradual improvement of the radar system used in different campaigns in OIB, a 

simplified version of the algorithm from Kwok and Maksym (2014) was developed where interfaces 

were located by measuring their deviation from their neighbors. Kwok et al. (2017) concluded that 

all methods described above were capable of reproducing the high snow depth pattern expected in 

the study area, but the performance of each individual method when compared with field 

measurement differs. More specifically, according to Kwok et al. (2017), when comparing the 

retrieval snow depth from these five methods with field data from Eureka, their corresponding mean 

bias are -0.8 cm (Kurtz et al., 2013), -5.7 cm (Kurtz et al., 2014), 1.3 cm (Koenig et al., 2016), 2.0 

cm (Newman et al., 2004), and -2.2 cm (Kwok and Maksym, 2014) 

 

Since the start of OIB, most algorithms developed including the ones described above are for 

snow on sea ice because of several possible reasons. First, the difference between dielectric 

properties of snow and frozen soil is generally weaker compared with snow and sea ice; second, the 

presence of vegetation presents a sizable challenge. When there is vegetation buried in the 

snowpack, it would likely increase the complexity of the snowpack while if the vegetation is 

emerging from the snowpack, it could interfere with radar waveforms before they reach the 

snowpack. Thirdly, terrain features on land like steep slopes and hummocks could further increase 

the complexity of the waveforms. In addition, the frequency ranges of the radar systems used by 

these algorithms are often not wide enough to cover shallow snow. However, Icebird 2019 Winter 

collected data over the Trail Valley Creek research station using a wide band radar with a frequency 

range of 2-18 GHz and this provides an opportunity to examine waveforms for snow over various 

land terrain features including different types of vegetation as well as hummocks and to determine 

whether principles behind snow on sea ice algorithms can be used for snow on land.  
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STUDY AREA 

 
The study area for this experiment is based at the Trail Valley Creek (TVC) research station, 

located at the northern boundary of the tundra-boreal forest ecotone, roughly 50 km north of Inuvik, 

Northwest Territories (Pohl et al., 2005; Pomeroy et al., 1998). The TVC research basin is within 

the Inuvialuit Settlement Region near the Inuvik-Tuktoyaktuk Highway. The watershed drains 

approximately 58 square kilometers into the Husky Lakes Estuary network. In addition, the basin 

itself is underlain with a continuous ice-rich permafrost. 

 

Topographically, the area is dominated by gently rolling hills (Pohl et al., 2005). A major terrain 

feature of the study area is the hummocks, which are defined as sub-meter to meter-scale circular to 

oval mounds (Verret et al., 2019). The existence of hummocks leads to a relatively large amount of 

the micro terrain that is below the spatial resolution of most field measurements. More complex 

terrain is present in the southern margins of the study area, in proximity to forests.  

 

According to Boike and Grünberg (2019) and Palmer et al. (2012), the study area contains 6 main 

vegetation types including trees (white and black spruce (Picea glauca and Picea mariana), tall 

shrubs, riparian shrubs, dwarf shrubs, tussocks, and lichens. Tussocks, lichens and dwarf shrubs are 

the dominant vegetation types while trees and tall shrubs have a relatively sparse distribution. For 

tall shrubs particularly, there are often other low height vegetation in between two tall shrubs (Boike 

and Grünberg, 2019). The landscape also features several lakes as shown in Figure 1 with a number 

of streams and rivers running through the study area. 

 

 
Figure 1. Landsat 8 images of study area; left is from 2019.06.18 and right is from 2019.04.15. 

Red triangle represents the location of TVC research station. 

 

 

DATASETS 

 
Snow Radar Data and Airborne Laser Scanning (ALS) Data from Icebird 2019 Winter 

The Icebird 2019 Winter campaign was aimed at conducting sea ice surveys over different ice 

regimes to observe, analyze, and estimate sea ice thickness in addition to examining regional snow 

distribution (Hendricks et al., 2019). An airborne wide band snow radar system observed snow on 
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sea ice and an ALS system observed surface roughness features (Hendricks et al., 2019). Five field 

observation periods were planned for the 2019 winter campaign, in which the fourth period, 

conducted between April 6th and April 11th, 2019, was when the snow radar and ALS data were 

collected and are used in this study. The particular study date that covered the TVC region was April 

10th, 2019.  

 

The onboard ALS system was a Riegl VQ-580 (Hendricks et al., 2019). The ALS point cloud data 

used in this study was level 1b with the included metadata consisting of geolocation and positioning 

information. With AWI toolbox (Alfred Wegener Institute, Helmholtz Centre for Polar and Marine 

Research, 2019), it was possible to filter the large point clouds by time period and narrowed it down 

to point clouds that were within the TVC study area. 

 

The snow radar system, mounted on the Polar-6 Basler BT-67, aircraft was set to operate in 

Frequency-Modulated and Continuous Wave (FMCW) mode for low-altitude missions. The aircraft 

flew at an elevation of approximately 61 m (200 ft) and 488 m (1600 ft) when using the radar for 

observation (Hendricks et al., 2019). The wide band radar operated at a frequency between 2 and 

18 GHz with 2 receiving channels (horizontal and vertical). Four combinations of polarization 

observations were achieved, VV, VH, HV, HH. The theoretical range resolution within the 

snowpack, assuming a snow density of 300 kg m3, was 1.14 cm. At 61 m (200 ft) height, the radar 

had an across-track footprint of 2.1 m and an along-track footprint of 2.0 m while at 488 m (1600 

ft) height, the two respective footprints were 6.0 m and 10.8 m. According to Hendricks et al. (2019), 

initial processing of the raw wide band radar was done using CRESIS Matlab Toolbox, followed by 

coherent noise removal and deconvolution of echograms (Julita et al., 2021).  

 

After the pre-processing, the data was separated in to 24 continuous segments of the flight path 

in a Matlab file format. Within the TVC study area, elements from 6 different flight paths were used 

(path numbers 1, 2, 6, 7, 11, 12, at VV polarization). The reason for using VV polarization instead 

of HH is that VV waveforms are generally of higher quality, for example, less noise and interference, 

and are more suited for identifying peaks. Using PySnowRadar (King et al., 2020), the files were 

read into python and each waveform was presented as a 1x14050 numpy array, with each element 

of the array being an intensity return. Each waveform data record included the impulse data, 

longitude, latitude, and the elevation of the aircraft. Figure 2 shows the flight line locations. 

Waveforms over water bodies (lakes and rivers or streams) were removed from the analysis leaving 

a total of 3128 radar data locations. 

 

ALS Point Clouds From 2016 

A snow-free ALS data set for the study region was acquired on September 13th, 2016, using a 

Riegl LMS-Q680i. The reason for needing this flight was to provide a snow-off DEM for the 

development of a lidar snow depth product when combined with a snow-on DEM from 2019. Details 

of data acquisition can be found in Anders et al. (2016). Three products from Anders et al. (2016) 

were used in this study including a digital terrain model (DTM), maximum vegetation height map 

and mean vegetation height map, as is shown in Figure 3. All three data have a spatial resolution of 

1 m and were later clipped to the study area. The 2016 DTM was used as a snow-off reference for 

the 2019 snow-on DTM to generate a snow depth map. Both vegetation height maps were used in 

conjunction with the TVC vegetation map to provide a guideline for typical heights of different 

vegetation types. 

 



26 

 

 
Figure 2. Location of the used radar data points colored by flight elevation (Landsat 8 from 

2019.04.15 as background). 

 

 
Figure 3. 2016 snow off DTM, max vegetation height and mean vegetation height maps. 
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Field Snow Depth Probe Measurements 

Field snow depth data were collected during three field campaigns in the winter of 2018-2019. 

Snow measurements focused on the open tundra area around the TVC research station. Snow depth 

measurements were made using a GPS-enable depth measuring probe, called a Magnaprobe 

(SnowHydro, n.d.). Table 1 shows the dates of the three campaigns as well as the number of depths 

recorded. In this paper, only the data from the last campaign were used because this campaign was 

temporally closest to when the radar flights took place on April 10th. Due to the limited coverage 

of the 2019 ALS point clouds, only approximately half of the measurements from the third 

Campaign were used (4334 points), whose locations and snow depth distribution are shown in 

Figure 4 and Figure 5. Most points have a snow depth between 0.3 and 0.5 m. The mean snow depth 

for all the used measurements is 0.42 m with a standard deviation of 0.13 m. As the field 

measurements do not cover gulley where deep snow is most likely to accumulate, there are few 

points with snow depth higher than 0.9 m.  

 

 
Table 1. Details of three field campaigns. 

 

 Dates Number of Depths Recorded 

First Campaign 
November 12th -18th 2018 6185 

Second Campaign 
January 11th-20th 2019 6740 

Third Campaign 
March 19th-27th 2019 8541 

 

 
Figure 4. Locations of used field measurement (Landsat 8 from 2019.04.15 as background). 
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Figure 5. Histogram distribution of snow depth measurements (collected between 2019.03.21 and 

2019.03.26). 

 

In addition, Table 2 shows the mean and median snow depth and its standard deviation for each 

vegetation type from the field data. Among the six vegetation types, tree and tall shrub have the 

deeper snow but also a larger standard deviation while dwarf shrub, tussock and lichen are 

comparable in terms of mean, median snow depth and standard deviation. 

 
Table 2. Mean and median snow depth and standard deviation for each vegetation type. 

 

 Tree Tall Shrub Riparian Shrub Dwarf Shrub  Tussock Lichen 

Mean (m) 0.56 0.63 0.49 0.42 0.42 0.43 

Median (m) 0.56 0.65 0.47 0.41 0.41 0.43 

Std (m) 0.21 0.16 0.17 0.13 0.13 0.12 

 

TVC Vegetation Map 

To account for the effect of different underlying vegetation on the radar waveform, a vegetation 

map was used to analyze spatial variability of vegetation type in the study region. A vegetation map 

of TVC was provided by Boike and Grünberg (2019), with a spatial resolution of 10 m. Vegetation 

is classified into 6 classes including tree, tall shrub, riparian shrub, dwarf shrub, tussock, as well as 

lichen as is shown in Figure 6. The map also contains a seventh class, water. The map covers the 

same area as the 2016 ALS point clouds data introduced above and is clipped to the study area. 

 

According to Boike and Grünberg (2019), the vegetation map was generated through combining 

ALS point clouds and airborne orthophotos. Reference areas were chosen and vegetation types in 

these areas were classified manually, after which a set of parameters were calculated to characterize 

each vegetation type. Parameters include terrain attributes derived from ALS point clouds (e.g., 

slope, aspect, vegetation height, etc.) as well as spectral attributes from orthophotos (e.g., average 

hue, average saturation, etc.). 

 

In their study, Boike and Grünberg (2019) reported a final map accuracy of 87.7% for the 

validation dataset and 89.5% for the calibration dataset. However, it was noted that with a 10 m 

spatial resolution grid, mixing of different vegetation types was likely in a single cell, specifically 

for tall shrub, where the actual tall shrubs are sparse and between the tall shrubs are normally low 

vegetation. 
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Figure 6. TVC vegetation map (Boike and Grünberg, 2019). 

 

 

METHODS 

 
Pre-processing 

Data pre-processing was divided into 2 components: the generation of a snow depth product for 

April 2019 and radar waveform pre-processing. Because the sparse field snow depth measurements 

did not spatially match the flight path of the airborne wide band radar, to provide snow depth 

reference for each radar data location, a snow depth product was generated by differencing the snow-

off DTM from September 13th, 2016 from the snow-on DTM from April 10th 2019. In addition, 

based on the snow depth distribution from the field data, any snow depth that is above 2.5 m or a 

negative value is treated as invalid (NaN).  

 

Four pre-processing steps were applied to radar waveform to prepare them for analysis. First, for 

each radar waveform (14050 range bins), the first 500 and the last 500 bins were removed to 

eliminate residual noise from these range bins, as is shown in Figure 7. More specifically, the 

maximum return of each waveform is assumed to be the snow-ground interface because the 

difference of dielectric properties between snow and soil is theoretically the largest amongst all 

different interfaces. However, for some waveforms, the maximum return is located in the beginning 

range bins or in the final range bins and is an artefact of system processing rather than geophysical 

signal since both sets of range bins are located geometrically far from where the snow-ground 

interface is expected. 
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Figure 7. Interference in the beginning and final bins. 

 

Second, a mean noise value was recorded for each waveform by averaging the first 100 returns 

after the first step. This was used as base reference to distinguish an interface peak in the waveform 

from noise. Third, the waveform was further reduced in length to 300 range bins, 150 bins before 

and 149 bins after the waveform maximum. The waveform maximum response is assumed to be the 

ground surface (snow-ground interface) which has the strongest power return. The reason for 

centering each waveform on its maximum was to provide a consistent reference when comparing 

different waveforms, regardless of ground elevation and flight elevation. However, the number of 

bins is arbitrary, and is largely influenced by the distribution of snow depth. Fourth, the waveforms 

were linearly normalized by dividing each return by its maximum response. 

 

Evaluation of Lidar Snow Depth Product 

Field snow depth data from King et al. (2020) collected between 2019.03.21 and 2019.03.26 were 

used as a ground reference to evaluate the lidar snow depth product obtained from differencing the 

2016 and 2019 DTMs. The 1-m cells of the lidar product were converted into a point shapefile using 

the centroid of each cell. For each field snow depth measurement, its coincident lidar snow depth 

was obtained by selecting the closest converted lidar snow depth centroid within 1 m as is shown in 

Figure 8. Comparisons of field and lidar snow depths were conducted for each vegetation type. 

Distribution parameters for both data were calculated (mean, standard deviation, and median) in 

addition to obtaining mean absolute error (MAE). 

 

Estimation of Snow Depth Using the Pulse Peakiness Approach 

Julita et al. (2021) described the pulse peakiness approach as one of a range of peak picking 

methods based on the pulse peakiness of local peaks. Most of these peak picking methods have been 

applied for sea ice applications (Kwok et al., 2017; Newman et al., 2014; Kurtz et al., 2013). As a 

peak in the waveform can potentially indicate the boundary between two mediums with different 

dielectric properties, the approach was essentially searching for peaks that represent the air-snow 

and the snow-ice interfaces. Logarithmic scale of the impulse return was used for locating the air-

snow interface and linear scale of the intensity returns was used for obtaining the snow-ice interface. 

The reason for using linear for the snow-ice interface is that the difference of dielectric properties 

between snow and sea ice is large enough that using a linear scale will decrease the number of peaks 

detected while preserving the interface peak. 
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Figure 8. Matching field snow depth and lidar snow depth. 

 

Eligible peaks were selected by applying a threshold over all detected peaks based on manually 

input parameters (log threshold & linear threshold) as well as the mean noise. A screening process 

was applied after identifying all the eligible peaks: if in linear scale, there were more than 5 eligible 

peaks, the waveform was considered too complicated to produce a robust result. For waveforms 

with fewer than 5 linear eligible peaks, two pulse peakiness values were calculated for each eligible 

peak. Unlike the pulse peakiness used in sea ice classification, Julita et al. (2021) defined these two 

pulse peakiness (left and right) as: 

 

 
 

where Speak is the linearly normalized intensity return, N is the bin range before and after the local 

peaks indicating how many bins are included into the calculation. It was recommended to use N = 

10 because it was 2 times the range resolution of the radar (Julita et al., 2021). Finally, air-snow 

interface was defined to be the first eligible peak whose PPl exceeded a set threshold while snow-

ice interface was defined to be the last eligible peak whose PPr exceeded another set threshold. 

 

Two changes were made to the pulse peakiness method that was developed for snow on sea ice. 

First, the process of defining the snow-ground interface using pulse peakiness "right" was removed 

and instead, it was assumed that the strongest return would be the snow-ground interface. For sea 

ice applications, there may be circumstances where the strongest return was the air-snow interface 

due to high brine concentrations in the lower part of the snow. Geldsetzer et al. (2019) has shown 

that the C-band radar response from snow on first year sea ice is complicated by the brine layer. The 

effect of the brine layer on other frequencies as wide band radar covers from 2GHz to 18GHz is less 

well described and possible future work is needed. Pulse peakiness right is introduced to address the 

situations where air-snow interface is the strongest return. However, for terrestrial snow, this is 

irrelevant. Second, additional screening process were added to overcome the complexity of the 
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waveforms. Compared with snow on sea ice, it is expected that there are considerably more complex 

reflections in waveforms on land especially due to complicated vegetation interactions. Two kinds 

of complex interaction are expected: interactions between the wave, snow, and emergent vegetation 

such as trees and tall shrubs, and interactions between snow and buried vegetation such as dwarf 

shrubs. Therefore, in addition to the original screening where the waveform must have no more than 

5 eligible linear peaks to have a valid output, 3 more restrictions were added. To begin with, the 

normalized linear return of the air-snow interface peak must be less than 0.6. Moreover, the air-

snow interface must be ahead of the strongest return (assumed snow-ground interface) in range bin 

sequence. Finally, a target peak was introduced to further filter out the waveforms that were too 

sophisticated. A target peak was defined to be the closest eligible logarithmic peak to the reference 

air-snow interface, where the reference air-snow interface was obtained by converting the lidar snow 

depth into range bins using an assumed snow density (Fig. 9). For any waveform, if no target peaks 

were present within 20 range bins of the reference air-snow interface, then the waveform was 

considered to be ambiguous and was removed from the analysis. 

 
Figure 9. Example target peak defined by the closet eligible log peak to the lidar reference air-

snow interface (waveform shown is from tussock). 

 

In summary, the snow-ground interface was assumed to be the strongest return in the waveform. 

Therefore, the algorithm required 3 parameters instead of the 4 originally defined by Julita et al. 

(2021): 1) logarithmic threshold for determining eligible peaks in logarithmic scale; 2) linear 

threshold for determining eligible peaks in linear scale, and 3) the left pulse peakiness threshold for 

choosing the air-snow interface. All three parameters were optimized by using lidar snow depth data 

as reference. For both logarithmic and linear threshold, the range was set to be between 0.1 and 0.9; 

for the left pulse peakiness threshold, the range was from 10 to 35. Optimization scoring for each 

set of parameters is shown below: 

 

 
 

Both MAE and the number of valid outputs were normalized to ensure they were similarly scaled 

(from 0 to 1). In addition, to ensure there would be sufficient points for evaluation, a requirement 

for the number of valid outputs under any set of parameters must be above 10% of the total points 

was added. Optimization was performed for each vegetation type separately. Finally, the best set of 

parameters were defined as the ones with the lowest score. 

 

The optimization algorithm was run using 3 different divisions of the dataset. First, it was run on 

the entire dataset, and then the optimal parameters were applied to the entire dataset, which 

represented a best-case scenario. Second, it was run on an 80-20 split of the dataset; 80% of the data 

were used for optimization/training and 20% of the dataset for testing. Third, a 50-50 split of the 

dataset, 50% optimization/training and 50% testing. 
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RESULTS 

 
Evaluation of Lidar Snow Depth Product 

Figure 10 shows the 1-m spatial resolution lidar snow depth product from the 2016 snow-off DEM 

and 2019 snow-on DEM. The snow depths were around 30-40 cm in relatively flatter grounds 

mostly covered by tussocks, lichen, and dwarf shrubs. This is similar to the distribution of field 

snow depth measurements despite there being a two-week gap between when the field 

measurements and wideband radar measurements were made. In areas near streams or some valleys 

in the bottom part of the study area, the snow depth was greater than 60 cm, as indicated by the 

bright white in Figure 10. This is due to the collection of snow in these gullies and depressions. 

 

 
Figure 10. Lidar snow depth product for the study area. 

 

 

There were 4334 field snow depth measurements used for the evaluation of lidar snow depth 

product. Table 3 shows the results of comparing the lidar snow depth with field measurement. 

Treating field snow depth as the reference, the lidar estimates underestimate snow depth for all six 

vegetation types, especially for tree, riparian shrub, and dwarf shrub classes as is shown in Figure 

11. It is necessary to note that there was a 14-day difference between the time when these two data 

were collected. According to local weather station data, the temperature remained below zero with 

no significant precipitation event, however, some snowmelt might have been present in the field 

which could explain part of the reason for the underestimation. Further work to verify this possibility 

is ongoing. In addition, it is possible that the underestimation was the product of mismatch between 

snow-off and snow-on dates (the snow-off DEM used was from 2016); the underlying terrain or 
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vegetation may have changed, leading to an inaccurate lidar snow depth. Equally, there could be an 

over-probe of up to 7.6 cm for the magnaprobe, as is mentioned in King et al. (2020), which would 

contribute to field snow depth being relatively greater. 

 

 
Figure 11. Scatterplot comparing lidar and field snow depth. 

 

 
Table 3. Evaluation of lidar snow depth. 

 

 Tree Tall Shrub Riparian 

Shrub 

Dwarf Shrub  Tussock Lichen 

 Field Lidar Field Lidar Field Lidar Field Lidar Field Lidar Field Lidar 

Mean 

(m) 
0.56 0.45 0.63 0.53 0.49 0.38 0.42 0.28 0.42 0.33 0.43 0.35 

Std (m) 
0.21 0.20 0.16 0.17 0.17 0.16 0.13 0.11 0.13 0.11 0.12 0.12 

Median 

(m) 
0.56 0.39 0.65 0.57 0.47 0.34 0.41 0.26 0.41 0.31 0.43 0.33 

RMSE 

(m) 
0.19 0.15 0.17 0.19 0.13 0.13 

Bias 

(m) 
-0.11 -0.10 -0.11 -0.15 -0.09 -0.08 

Std_bias 

(m) 
0.16 0.11 0.13 0.12 0.09 0.10 

Count 13 151 231 1316 1456 1167 

 

 

Pulse Peakiness Approach Results 

Table 4 shows the optimal pulse peakiness parameters for each vegetation type using a 100-0 

split, and Figure 12 shows the retrieved snow depth variation for each vegetation classes. The pulse 

peakiness estimates used are from the optimal parameters obtained for a 100-0 split. The reason for 

using a 100-0 split is that the randomness in splitting the data has a significant effect on the 

optimization results, especially for tree, tall shrubs, and riparian shrubs. Moreover, a 50-50 split 

may result in insufficient amount of the waveforms for the algorithms, which will enhance the effect 

of the randomness in splitting. It is necessary to note that this is the first attempt of developing the 

method and a stratified random split could be tested in the future. 

 

 

 



35 

 

Table 4. Optimal pulse peakiness parameters for each vegetation type 

 Log Lin PP_L MAE (m)  Bias (m) RMSE (m) Pearson Valid/Total Points 

Tree 0.6 0.5 25 0.12 0.03 0.15 0.65 11/84 

Tall Shrub 0.3 0.8 20 0.27 0.13 0.34 0.20* 226/441 

Riparian Shrub 0.2 0.7 15 0.29 0.21 0.38 0.35* 209/321 

Dwarf Shrub 0.4 0.5 25 0.13 0.04 0.19 0.29* 135/500 

Tussock 0.5 0.5 30 0.09 0.04 0.12 0.55* 141/1224 

Lichen 0.3 0.5 30 0.10 0.01 0.15 0.46* 74/558 

*indicates significant P-value at α<0.01 

 

 
Figure 12: Pulse peakiness snow depth variation for each vegetation type 

 

Overall, from Figure 12, snow depth variation is considerably higher for trees, tall shrubs and 

riparian shrubs in addition to them having generally thicker snow, possibly due to the higher 

vegetation. 

 

For trees, despite a relatively high Pearson correlation coefficient and a low MAE, the p-value is 

not significant because there are few points. The scatterplot (Figure 13a) for trees further proves the 

high correlation and low MAE where most points fall closely around the 1:1 line. While this is 

promising, due to the sparse distribution of trees in the study area, the valid points shown here are 

likely to be returns from spaces between trees instead of actual tree returns. This is further reinforced 

by the similarity of parameters between tree and three other low height vegetation (dwarf shrub, 

tussock, & lichen). The low linear threshold at 0.5 filtered out all waveforms from actual tree returns 

since these waveforms are highly complex with a large number of peaks. Both tall shrub and riparian 

shrub have low Pearson correlation coefficients (and high MAE values) of 0.2 (0.27m) and 0.35 

(0.29m), respectively. The scatterplots (Figure 13b and c) show the characteristics of relationships 

between radar and reference estimates with no discernible relationship between tall shrub and lidar 

and a general overestimation of the radar estimates for tall shrubs. An additional observation here 

is the high linear threshold of these two vegetation types compared with low height vegetation like 

tussock. As a high linear threshold leads to complex waveforms (ones often challenging for this 

retrieval approach) being more likely to be fed into the retrieval, the optimal linear threshold should 

be as low as possible provided that there will be sufficient valid output. For tall shrub and riparian 

shrub, a high optimal linear threshold indicates that fewer waveforms from these two vegetation 

types resembles the ideal two-peak shape, and the optimization was forced to include more complex 

waveforms to satisfy the criteria of having enough valid outputs. 
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For dwarf shrub, the MAE is 0.13 m with a Pearson correlation coefficient of 0.29. Due to the 

lower linear threshold, the increase in total points does not lead to an increase in valid points. From 

Figure 13d, the reason for a low Pearson correlation coefficient is the overestimation of snow depth 

by the pulse peakiness algorithm. More specifically, there are a series of points with increasing pulse 

peakiness snow depth, whose Lidar snow depths remain constant at around 0.2 and 0.3 m. This is 

most likely to be caused by the waveform having multiple peaks with close to maximum returns and 

will be further discussed later. In comparison, the underestimation of the retrieval retained the 

observable pattern from riparian shrub as most of the points above the 1:1 line still falls into a linear 

pattern. 

 

According to Boike and Grünberg (2019) tussock and lichen classes are characteristically similar 

in classification terms. However, they are functionally different biophysically. They behave 

similarly in terms of their radar waveform. Compared with other vegetation types, they have the 

best retrieval results with MAE of 0.09 m for tussock and 0.1 m for lichen and Pearson correlation 

coefficients of 0.55 and 0.46, respectively. This result is to some degree achieved by severely 

constraining the waveform selection for use with the algorithm, as indicated by the low valid / total 

points ratio. In other words, for tussock and lichen, the two thresholds are relatively more effective 

at filtering out waveforms that are difficult for the algorithm to accurately obtain interfaces. Both 

the decrease in MAE and the increase in Pearson correlation coefficient are illustrated in the 

scatterplot of Figure 13e and f, where the overestimation that results in the low correlation for dwarf 

shrubs has mostly disappeared. It is noted that the pattern for underestimation of the method persists 

in both of these vegetation type, indicating that this could possibly be addressed with empirical bias 

correction. 

 

 
Figure 13. Scatterplots between pulse peakiness and lidar snow depth estimates for the following 

classes a) tree, b) tall shrub, c) riparian shrub, d) dwarf shrub, e) tussock and f) lichen. 
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DISCUSSION AND CONCLUSION 

 
Underestimation and Overestimation 

Both underestimation and overestimation exist but they result from different sources. With respect 

to underestimation, it is likely to not be from waveform / radar measurement and it follows a clear 

pattern, meaning that it can be mitigated to a degree with a bias correction. On the contrary, the 

overestimation is mainly resulted from the waveforms and needs other more delicate solutions.  

 

The tussock land cover class is used to illustrate the underestimation problem as this landcover 

class has the most radar points. When running the pulse peakiness approach on the 100-0 split 

scenario, out of 141 valid outputs, 57 had an absolute error of 10 cm or above. And out of these 57, 

39 underestimated snow depth in a similar way as is shown in Figure 14. The Lidar reference air-

snow interface falls into areas which could be considered noise in the logarithmic scale intensity 

return while the algorithm was successful in identifying the first peak that satisfied the logarithmic 

threshold. 

 

 
Figure 14. Sample underestimating waveforms for pulse peakiness where the Lidar reference air-

snow interface falls below the logarithmic threshold. 

 

As pulse peakiness left value alone normally cannot uniquely identify a peak as the air-snow 

interface, it is likely that before the interface peak, there would be numerous peaks with similar 

pulse peakiness left values. Consequently, it is extremely important to exclude as many non-

interface peaks before the interface peak as possible to increase the chance of it being the first that 

exceeds the pulse peakiness left value threshold. This is achieved through the application of a 

logarithmic threshold. By lowering the threshold to accommodate the type of underestimation 

shown in Figure 14 the result would most likely lead to an overestimation of snow depth. An 

alternative is to apply a post algorithm bias correction based on this dataset.  

 

To achieve this, the data were split in half into training and testing subsets, for which an average 

of underestimation was calculated for all the waveforms in the training subset. This average was 

used as the bias correction for all the waveforms in the testing set. Figure 15 shows the comparison 

between the un-corrected scatterplot and the corrected scatterplot. The average bias for the training 

set in this case is approximately -4 cm and the MAE after the correction decreased approximately 1 

cm. The reason for such a small improvement is that the bias correction is applied to all the 

waveforms in the testing sets including those that are grossly overestimating. More intricate 

solutions to this bias correction, such as the identification and character generalization of 

underestimating waveforms should further improve the results. 
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Figure 15. Before and after bias correction. 

 

With respect to the overestimation problem, the main reason is the complexity of the waveform. 

A complex waveform here is defined as a waveform that has more than one peak that is close to the 

maximum return, in other words, a waveform that has no clear single maximum return. There can 

be a number of reasons why a waveform may have multiple “maximum” returns, but one plausible 

possibility is that a feature in the snowpack has a similar dielectric response to the ground surface.  

 

This kind of waveform is inconsistent with the baseline assumption of a clear single maximum 

return peak being the snow-ground interface, and therefore disrupts the snow depth calculation 

which is the distance between air-snow peak and the maximum return. Figures 16 and 17 show 

examples of overestimation in dwarf shrubs and lichen.  

 

 
Figure 16. Sample overestimation for dwarf shrubs where there are multiple peaks close to the 

maximum peak. 

 

To counteract this problem, one possible way is to apply a signal-to-noise ratio (SNR) threshold 

that excludes waveforms like the one shown in Figure 16. For such waveforms, adding another 

screening criterion that requires the waveform to have only 1 peak whose return is above a certain 

value should help filter them out. The challenge would be to set the correct threshold so that it does 

not filter out too many of the waveforms leaving the algorithm with insufficient valid outputs. 
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Figure 17. Sample overestimation for lichen where there are multiple peaks close to the maximum 

peak. 

 

 

Error of Omission for the Pulse Peakiness Approach 

Due to the limited number of valid outputs of the pulse peakiness approach, an analysis was done 

on the error of omission for dwarf shrub, tussock, and lichen. The reason for excluding trees, tall 

shrub and riparian shrub is that these landcover types have more complex waveform responses and 

therefore are omitted from the algorithm.  

 

Table 5 shows the distribution statistics for Lidar points belonging to dwarf shrub (500), tussock 

(1224), and lichen (559) as well as those with a valid pulse peakiness output (135, 141, & 74). It 

demonstrates that for dwarf shrub and lichen, even though pulse peakiness filters excluded parts of 

the data, the distributions are still similar. However, for tussock, the pulse peakinesss distribution 

has shifted slightly to lower snow depth, which is further reinforced by the histogram shown in 

Figure 18. The pulse peakiness output is lacking representation of snow depth that is above 0.4m. 

 
Table 5. Distribution statistics for Lidar snow depth and pulse peakiness valid output. 

 

 Dwarf Shrub Tussock Lichen 

 Lidar Pulse Peakiness Lidar Pulse Peakiness Lidar Pulse Peakiness 

Mean (m) 0.32 0.33 0.38 0.28 0.44 0.37 

Median (m) 0.30 0.28 0.36 0.25 0.42 0.34 

Std (m) 0.14 0.19 0.14 0.13 0.16 0.16 

 

 

 
 

Figure 13. Distribution statistics for Lidar snow depth (left) and pulse peakiness (right) valid 

output. 
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CONCLUSION 

 
The overall objective of this thesis is to test the applicability of a standard interface-based snow 

depth retrieval algorithms for snow on sea ice to snow on land. In principle, the pulse peakiness 

approach from Julita et al. (2021) should be valid for applicability to snow on land because the 

snow-ground interface provides a strong dielectric contrast along with the snow-air interface; these 

contrasts should be somewhat similar to snow on sea ice. However, the complex ground 

characteristics narrowed the locations where the pulse peakiness method could yield accurate 

results. More specifically, the presence of tall surface vegetation combined with the hummocky 

terrain meant that a considerably large percentage of the waveforms were discarded, and to some 

degree refocused the effort into how to filter out complex waveforms that are too ambiguous for the 

method. In conclusion, for snow on land, if the ground is generally a flat surface with minimal 

vegetation, it is expected that the interface-based pulse peakiness algorithm will have a good 

performance.  
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