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The Impact of Patchy Snow Cover on Snow Water Equivalent 
Estimates Derived from Passive Microwave Brightness 

Temperatures Over a Prairie Environment 
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ABSTRACT 

Considerable seasonal and inter-annual variation in the physical properties and extent of snow 
cover pose problems for obtaining reliable estimates of quantities and characteristics of snow 
cover both from conventional and satellite measurements (Goodison and Walker, 1994; Goita et 
al., 2003). In spite of these challenges, the Climate Research Branch of the Meteorological Service 
of Canada (MSC) has developed a suite of algorithms to derive snow water equivalent (SWE) 
estimates from remotely sensed passive microwave imagery (Goodison and Walker, 1994; 
Derksen et al., 2002; Goita et al., 2003). These algorithms work particularly well over open prairie 
environments under the assumption of large areas of consistent snow cover (Derksen et al., 2002). 
While studies have documented underestimation in passive microwave estimates of snow extent in 
marginal areas when compared to optical satellite data (Derksen et al., 2003b), the accuracy in 
SWE retrievals under variable and patchy snow conditions is not well understood. 

In an effort to better understand how a variable and patchy snow cover impacts remotely sensed 
SWE retrievals, a field-based experiment was conducted over a patchy snow covered area in 
February 2005. A systematic sampling strategy was developed over a 1600 km2 area in southern 
Saskatchewan near a calibration/validation flight line used for algorithm development in the 1980s 
(Goodison and Walker, 1994). Land cover at the sampling sites included fallow and stubble fields, 
pastures, and shelter belts. A large number of sampling sites contained snow pack layers that 
included one or more ice lenses. 

We verify that the continuous snow cover assumption embedded in the MSC passive microwave 
SWE algorithm does not produce acceptable results over a patchy snow cover. Several in-situ 
observations that appear to play an important role in affecting the satellite passive microwave data 
over a variable snow cover include the presence or absence of an ice lens, the fractional snow 
covered area, snow depth, and the ground temperature. 

  
Keywords: snow cover, snow water equivalent, passive microwave, remote sensing  

INTRODUCTION 

Microwave radiation is naturally emitted everywhere on the Earth. Its measurable intensity 
varies from place to place based on soil types, land covers, snow pack characteristics, and other 
variables (Goita et al., 1997; Sokol et al., 1999). At microwave frequencies above 15 GHz, the 
emitted radiation is scattered by snow particles as it passes through the snow pack (Goita et al., 
1997). Increasing the snow pack depth or grain size results in an increase in scattering and 
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subsequent lower microwave brightness temperatures when measured above the surface (Goita et 
al., 1997). Wet and/or dense snow packs however, decrease the amount of scattering, and produce 
near blackbody emissions (Sokol et al., 1999). Complex snow packs, containing numerous layers 
at different densities, selectively influence microwave radiation, producing inconsistent 
measurements. 

Radiation recorded by a microwave sensor is expressed as a brightness temperature (TB) in 
Kelvin units. One parameter commonly derived from remotely sensed brightness temperatures is 
snow water equivalent (SWE), which is the amount of water stored in a snow pack that is available 
upon melt. 

Intensive research with passive microwave TB data has focused on empirically derived 
algorithms used to estimate SWE for validation of ground-truth observations (Goodison and 
Walker, 1994; Goita et al., 1997; Derksen et al., 2002; 2003a). Currently, the Meteorological 
Service of Canada (MSC) employs a suite of linear algorithms to retrieve SWE estimates from 
passive microwave sensors. The MSC algorithms vary according to land cover, with different 
coefficients used for open prairie, deciduous forest, coniferous forest, and sparse forest (Goita et 
al., 1997; Singh and Gan, 2000; Derksen et al, 2003a; 2003b). For example, the algorithm used to 
derive SWE over the open prairie is a vertically polarized TB gradient ratio (Goodison and Walker, 
1994) defined as: 

 
SWE (mm) = –20.7 – (37v – 19v) * 2.59 (1) 

 
Variables 37v and 19v are the brightness temperatures acquired from vertically polarized 

frequencies of 37 and 19 GHz, while the coefficients 2.59 and –20.7 are the slope and intercept of 
the best-fit regression line found between ground and airborne brightness temperatures (Goodison, 
1989). Numerous studies have found SWE estimates derived from this algorithm to be within 
±10–20 mm of in-situ observations (Goodison and Walker, 1994; Derksen et al., 2002; 2003b), 
however, the MSC algorithm assumes a complete snow cover and the effects of patchy snow cover 
on SWE estimates are not well understood.  

 
To help understand the relationship between patchy snow covers and remotely sensed SWE 

estimates, a field campaign to measure SWE in a highly variable snow pack was conducted from 
February 21st to 23rd, 2005 in southern Saskatchewan. The objectives of this study were to: 

 
i) Compare remotely sensed SWE estimates against ground-truth measurements; 
ii) Determine how well the MSC prairie SWE algorithm performs over a patchy snow cover; 

and 
iii) Identify in-situ variables that significantly influence passive microwave SWE estimates 

over a patchy snow cover. 

STUDY AREA 

The study area is located approximately 100 km south of Regina, Saskatchewan around the 
town of Radville and the villages of Pangman and Ceylon (Figure 1). This area was selected 
because previous research had been performed in this area by Environment Canada. In addition, 
the snow cover typical of this area has been found to have regions of both patchy and complete 
snow-cover (Goodison and Walker, 1994; Turchenek, 2004). 

The Missouri Coteau, a remnant glacial moraine, cuts across the southwest portion of the study 
area, forming a low, rolling topography. Although the natural vegetation in this area consists of 
short grasses, a large portion of the land is under agricultural production, where wheat and other 
grains are farmed. Pockets of trees and shrubs create shelter belts in areas with higher moisture 
supply. 

Relatively short warm summers and long cold winters are characteristic of Saskatchewan’s 
prairies (Hare and Thomas, 1979). With few perennial streams, much of the region’s water supply 
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comes in the form of precipitation. However, the annual precipitation in the region is relatively 
low, and evapotranspiration usually exceeds the annual precipitation, creating an average water 
deficit by middle to late summer (Laycock, 1972). Most annual precipitation falls in the summer, 
while February is usually the driest month (Hare and Thomas, 1979). 

 

 

 

 Figure 1. Study area 

The winter season provides relatively low amounts of snow. Extended periods of cold, clear 
weather are interrupted by occasional blizzards with gusting winds. Warming periods are frequent 
in the early and late winter (Laycock, 1972; Hare and Thomas, 1979; Walker et al., 1995). Wind 
re-distributes the snow cover by removing snow from one area and depositing it in another. 
Similarly, warming periods also impact the snow cover through freeze–thaw processes (Laycock, 
1972; Walker et al., 1995). As the air and ground temperatures rise, the snow pack melts. When 
the snow pack re-freezes, it becomes denser and shallower. Thus, along with topographic effects 
and changes in vegetation, weather systems can impart a considerable variability in snow pack 
depths and densities. 

REMOTE SENSING DATA 

Four sets of coincident remote sensing data were analyzed (Table 1). Three data sets were 
derived from the brightness temperatures collected from the Advanced Microwave Scanning 
Radiometer for NASA’s Earth Observing System (AMSR-E). The first AMSR-E data set includes 
TB re-sampled to the 12.5 km Equal Area Scalable Earth Grid (EASE-Grid) (Armstrong and 
Brodzik, 1995). The second includes AMSR-E TB re-sampled to the 25 km EASE-Grid and the 
third AMSR-E data set includes non-gridded TB swath data. For comparison, a fourth data set of 
SWE estimates derived from Special Sensor Microwave/Imager (SSM/I) brightness temperatures 
re-sampled to the 25 km EASE-Grid was included. Although data were acquired for each day of 
the field campaign, the only remote sensing data analyzed here were those collected on the first 
day of the campaign (Feb 21st, 2005). Future research will incorporate the coincident remote 
sensing data from each date of the field campaign.  
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Table 1: Remote sensing data used within this study 

Data Set Label Spatial Resolution Description 

1)    12.5k_AMSR-E SWE 12.5 km 

SWE estimates derived from 
AMSR-E TB re-sampled to 12.5 km 
EASE-Grid 

       12.5k_AMSR-E 18.7v 12.5 km 
18.7v TB obtained from AMSR-E 

re-sampled to 12.5 km EASE-Grid 

       12.5k_AMSR-E 36.5v 12.5 km 
36.5v TB obtained from AMSR-E 

re-sampled to 12.5 km EASE-Grid 

2)    25k_AMSR-E SWE 25 km  

SWE estimates derived from 
AMSR-E TB re-sampled to 25 km 
EASE-Grid 

        25k_AMSR-E 18.7v 25 km 
18.7v TB obtained from AMSR-E 

re-sampled to 25 km EASE-Grid 

        25k_AMSR-E 36.5v 25 km 
36.5v TB obtained from AMSR-E 

re-sampled to 25 km EASE-Grid 

3)    Swath_AMSR-E SWE 24 km x 12 km  

SWE estimates derived from 
AMSR-E TB that have not been re-
sampled 

       Swath_AMSR-E 18.7v 24 km  
18.7v TB obtained from AMSR-E 

that have not been re-sampled 

       Swath_AMSR-E 36.5v 12 km  
36.5v TB obtained from AMSR-E 

that have not been re-sampled 

4)    25k_SSM/I SWE 25 km  

SWE estimates derived from 
SSM/I TB re-sampled to 25 km 
EASE-Grid 

METHODS 

The analysis procedure was divided into four steps: i) collection of the ground-truth 
observations, ii) processing of the data sets, iii) comparison with the remotely sensed SWE 
estimates, and iv) statistical tests. These are discussed in the following subsections.  

In-situ Data Collection 
The study area was systematically divided into 25 km square grid cells, with the centre of each 

cell located at 5 km intervals. Field measurements were made nearest the centre of each grid cell 
as possible. The field campaign was concentrated into a three-day period to minimize changes in 
snow pack conditions due to melt or fresh snowfall. 

Two teams, of 3–4 surveyors each, collected a total of 88 ground observations from 84 sampling 
sites that covered an area of 1600 km2. As a control, four of the sites were sampled on consecutive 
days to ensure data consistency. Included in the 84 sampling sites were 20 sites coincident with an 
established MSC validation/calibration snow course data archive (Flight Line 603). Comparisons 
among these data will be the subject of a future communication. The land coverage of the 
sampling sites included pastures and shelter belts, as well as fallow and stubble fields. The 
ground-truth data collected from each sampling site included: geographic locations, snow pack 
profiles, depth measurements, core samples, air and ground temperatures, site photographs, 
sampling dates and times, and land cover and weather observations. Sampling site locations were 
recorded using global positioning system (GPS) handsets. Since data for differential corrections 
were not available, the positions have an approximate accuracy of 10 metres. 

Approximately 90% of the sampling sites were found to have patchy snow coverage. As such, 
one of the first observations made at each site was a visual assessment of the percentage of snow 
cover. Each team member made this assessment independently and these values were then 
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averaged to reduce bias in this variable. For sites with complete snow cover, a total of 4 snow core 
samples were collected. This number was reduced proportionally for partially covered sites. For 
example, only 2 cores were collected from sites determined as having 50% snow coverage, and 
just 1 core was collected from sites with 25% snow cover. This rationale was used to satisfy the 
requirement that the cores be taken randomly within each site. Thus, if a site was found to have 
50% snow cover, then the probability of randomly selecting a sampling location containing snow 
is only 50%. In this situation, the 2 core samples that were not actually collected were simply 
given zero values for their core lengths, depths, weights, and densities.  

The core samples were obtained using Eastern Snow Conference (ESC-30) snow core tubes. 
Measurements from the core samples include the actual depths of the snow packs from where the 
cores were removed, the lengths of the cores, and their weights. The lengths and weights of the 
cores were used to calculate the core densities and ground SWE measurements. Snow densities, 
represented as g/cm3, were based on the average of the 0 to 4 core samples. 

A snow pit was dug at each sampling site and a detailed snow pack profile was made that 
included the snow pack’s total depth, the number of layers and ice lenses within the snow pack, 
the depth and snow grain size of each layer (using Sears snow crystal screens, labeled with 1–3 
mm grids), a qualitative description of each layer, and the air and snow/ground interface 
temperatures. A total of 16 depth measurements were made around each snow pit using 15-metre 
long ropes as guides for the purpose of consistently collecting the depth measurements from 30-
metre diameter circles. Depth measurements to the nearest one-half centimetre were made using 1-
metre long depth probes. The depth measurements from each site were used to calculate the 
average depths within the sites, which were then used as representative values for the sampling 
sites. The average depths are based on the 16 random depth measurements recorded from the 
circle around the snow pit along with the 0 to 4 depth measurements recorded from the snow core 
samples.  

Other data recorded included the sampling dates and times, weather observations, and land 
cover types. 

In-situ Data Processing 
Two data sets were created from the ground sampled data in order to better understand how 

snow properties over a partial snow cover are manifested in the remotely sensed SWE estimates. 
In the “Snow-Only” data set, only those snow depth measurements that were greater than zero 
were included in the average depth, density, and ground SWE calculations. For example, if a site 
was found to have snow depth readings of 3, 4, 0, 1, and 4 cm, then the average depth for that site 
was recorded as 3.0 cm ( (3 + 4 + 1 + 4) / 4 ), excluding the zero value. Conversely, the same site 
in the “Actual-Conditions” data set would have a mean depth of 2.4 cm ( (3 + 4 + 0 + 1 + 4 / 5) ).  

 From each of these data sets, four SWE estimates were calculated. The first ground SWE value, 
“Core_SWE,” represents the SWE calculated by using the mean SWE from the snow cores only. 
The second SWE value, “Derived_SWE,” is representative of the mean value for the Core_SWE 
plus the SWE derived from the 16 depth measurements using the average density for each 
sampling site. The remaining SWE values, “Fractional_Core_SWE” and 
“Fractional_Derived_SWE” are represented by the previous SWE values weighted by the 
Snow_Cover_Percent, respectively. Four SWE values were deemed necessary to investigate the 
most accurate way of representing SWE over a patchy snow cover.  

Remote Sensing Data  
The remote sensing images were re-projected to a UTM projection for analysis in ArcGIS. Each 

pixel centroid was assumed to be a point, and pixel footprints were created using Thiessen 
polygons. The Thiessen polygon algorithm segments the measurement space into polygons such 
that every polygon encloses the region closest to each pixel centroid (O’Sullivan and Unwin, 
2003). Although the algorithm does not produce perfectly squared pixels, the fact that the 
algorithm measures the mid-points between the pixel centroids ensures that the spatial resolutions 
of the remote sensing data sets are preserved. 
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Following previous research by Goodison and Walker (1995) and Derksen et al. (2002, 2003b), 
remotely sensed SWE estimates were compared to ground SWE measurements. The remotely 
sensed estimates found to be within ±20 mm (the previously determined accuracy of the MSC 
SWE algorithm) of ground measurements were considered as equivalent. SWE estimates found 
not to be within the ±20 mm threshold were considered as anomalous. 

Statistical Comparison Tests 
Z-tests were performed between the results of the Snow-Only and Actual-Conditions data sets to 

determine if there were significant differences in algorithm performance between the two ground-
truth representations. Linear regression models were developed between the remote sensing data 
(as the dependant variables) and the ground observations from the coincident sampling sites (as 
the independent variables). 

The linear regression outputs were interpreted following the systematic procedure proposed by 
Gupta (2000) (Figure 2). The significance of the model fit is analyzed. The model significance 
explains the deviations of the dependent variables (eg. the SWE estimates and TB). We used a 
model significance of 0.10 (90% confidence level) as the cutoff for model acceptance. Models 
with levels below the 90% confidence level were removed from further analysis. 

The next step in interpreting the regression output is to analyze the Adjusted R2 value from the 
model summary. This value is sensitive to the addition of irrelevant variables, and is a measure of 
the proportion of the variance in the dependent variables that are explained by the variations of the 
independent variables. For example, an Adjusted R2 value of 0.500 suggests that 50% of the 
variance in a SWE estimate is explained by the variation in the ground-truth measurements. 

The third interpretation step involves identifying the reliability of the individual coefficients for 
the independent variables. The Beta values included in the coefficients output indicate the 
predicted coefficients for the model along with their standard errors and significances. Similar to 
the significance of the model fit, if a coefficient results in a significance value above 0.10, then it 
can be concluded that the independent variable is not significant at a 90% level of confidence. 

 Table 2 provides an instructive example of how an output coefficient table is analyzed. The 
SWE predicted by the model is specified by the Constant’s Beta coefficient, 30.5 mm. The 
standard error of this prediction is 1.9 mm of SWE. The next step is to identify the significance of 
the independent variables’ Beta coefficients. In this example, a coefficient of .149 for the average 
snow pack depth is found to be significant at a 95% level of confidence (sig. = .043), but the 
coefficient of –2.899 for the average density is irrelevant (sig. = .776) towards the predicted SWE 
value.  

Table 2: Example coefficient table output 

Model 
Unstandardized 

Beta 
Coefficients 

St. Error Significance 
Constant (predicted SWE value) 30.5 1.9 — 

Depth 0.149 0.111 0.043 
Density –2.899 10.148 0.776 
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Figure 2. Flow chart of regression analyses 

RESULTS  

The results are presented in two parts. First, the remotely sensed SWE estimates are compared 
with the SWE measurements obtained from the coincident sampling sites. This is followed by an 
analysis of the linear regression models. 

In-situ vs. Remotely Sensed SWE Estimates 
The SSM/I and swath AMSR-E SWE data provided the closest estimates to both in-situ data 

sets. This was expected, because: i) the MSC algorithm used to derive SWE estimates was actually 
developed for SSM/I TB, and ii) the swath AMSR-E TB have not been re-sampled, thus, they are 
truer representations of the interaction between the sensor and the ground surface. Tables 3 and 4 
illustrate the number (and percentage in brackets) of sampling sites that were found to be 
equivalent (i.e. within ±20 mm SWE) to the remotely sensed SWE estimates. Table 3 shows the 
results of the Snow-Only data set, while Table 4 presents the results of the Actual-Conditions data 
set. These results also show a slight increase in algorithm agreement when only the amount of 
snow found at each sampling site is included in the ground-truth observations (i.e. Core_SWE 
from Table 3 vs. Table 4). 
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Table 3: Number of equivalent Snow-Only coincident sites (n=88) 

SWE Calculation SSM/I 
12.5k 

AMSR-E 
25k 

AMSR-E 
Swath 

AMSR-E 

Core_SWE 
55 

(63%) 42 (48%) 20 (23%) 56 (64%) 

Fractional_Core_SWE 
50 

(57%) 29 (33%) 11 (13%) 49 (56%) 

Derived_SWE 
58 

(66%) 32 (36%) 15 (17%) 54 (61%) 

Fractional_Derived_SWE 
45 

(51%) 24 (27%) 7 (8%) 45 (51%) 

Table 4: Number of equivalent Actual-Conditions coincident sites (n=88) 

SWE Calculation SSM/I 
12.5k 

AMSR-E 
25k 

AMSR-E 
Swath 

AMSR-E 

Core_SWE 
51 

(58%) 
34 

(39%) 
13 

(15%) 
52 

(59%) 

Fractional_Core_SWE 
44 

(50%) 
27 

(31%) 
10 

(11%) 
45 

(51%) 

Derived_SWE 
45 

(51%) 
26 

(30%) 
9 

(10%) 
49 

(56%) 

Fractional_Derived_SWE 
33 

(38%) 
23 

(26%) 
7 

(8%) 
40 

(45%) 
 
By weighting the in-situ SWE values by the percentage of snow cover found at the sites (i.e. 

reading down each column) the agreement with the remote sensing estimates decreases by an 
average of approximately 10% in the Snow-Only data set, and by an average of approximately 7% 
in the Actual-Conditions data set. Further, the remote sensing SWE algorithm generally had a 
higher level of agreement with Core_SWE measurements than with Derived_SWE values.  

Therefore, for a patchy snow cover, it appears that the MSC SWE algorithm had the closest 
agreement with ground SWE measurements based only on the core samples 

Further analyses using only these Core_SWE measurements found that, on average, the remote 
sensing algorithm tended to overestimate the patchy in-situ SWE measurements in all cases (Table 
5). This was not surprising since the remote sensing algorithm was originally derived for a 
complete snow cover. 

Table 5: Mean differences in SWE values between remote sensing estimates and in-situ measurements 
(for core samples only) 

 SSM/I 
12.5k 

AMSR-E 
25k 

AMSR-E 
Swath   

AMSR-E 
Snow-Only Core_SWE 4.8 17.7 32.1 5.4 
Actual-Conditions Core_SWE 8.7 21.6 35.9 9.3 
 
We also wanted to examine the effect that varying land covers had on the spaceborne SWE 

estimates. The ranges in ground SWE measurements were very high, particularly when the 
sampling sites included shelter belts and fallow fields, which were found to have drastically 
different snow conditions than stubble fields and pastures. Table 6 shows that there is little 
difference in the mean SWE values representative of stubble fields (26.1 mm) and pastures (23.0 
mm), but great disparity between these values and fallow fields (1.7 mm) and shelter belts (94.8 
mm). 
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Table 6: Actual-Conditions SWE, depth, and density measurements by land cover type  

Land Cover n SWE (mm) Depth (cm) Density (g/cm3) 

Stubble 54 

mean = 26.1 
min = 1.3 
max = 66.3 

mean = 7.9 
min = 1.0 
max = 19.0 

mean = 0.226 
min = 0.026 
max = 0.511 

Fallow 15 

mean = 1.7 
min = 0 
max = 8.8 

mean = 0.8 
min = 0 
max = 4.7 

mean = 0.054 
min = 0 
max = 0.265 

Pasture 12 

mean = 23.0 
min = 5.1 
max = 44.1 

mean = 6.7 
min = 1.8 
max = 16.4 

mean = 0.219 
min = 0.110 
max = 0.364 

Shelter Belt 2 

mean = 94.8 
min = 75.6 
max = 114.0 

mean = 26.8 
min = 22.7 
max = 30.9 

mean = 0.292 
min = 0.267 
max = 0.316 

Linear Regression Models 
Linear regressions were performed using the Statistical Package for the Social Sciences (SPSS) 

software. The regressions were performed using the remotely sensed SWE estimates and 
brightness temperatures as the dependent variables and the in-situ observations as the independent 
variables. Analyses were again performed between the Snow-Only and Actual-Conditions data 
sets. Table 7 lists and describes the in-situ observations used in all of the regression models. 

Table 7: Measured snow properties used in linear regression models 

Independent variable Variable Type Description 

Percent_Snow_Cover Ratio 
Percentage of snow cover found at 

each sampling site.  
Depth Ordinal Mean snow pack depth of each site. 
Density Ratio Mean snow pack density of each site. 
Air_Temp Interval Air temperature recorded at each site. 

Ground_Temp Interval 
Snow/ground interface temperature 

recorded from the snow pit. 

Num_Layers Ordinal 
Number of snow pack layers found in 

the snow pit. 
Land_Cover Nominal Type of land cover. 

Ice_Lens Binary/Nominal 

Indicates whether or not one or more 
ice lenses were found in the snow pack 
of the snow pit. 

Num_Lenses Ordinal 
Number of ice lenses found in the 

snow pack of the snow pit. 

Total_Lens_Thickness Ordinal 
Total ice lens thickness found within 

the snow pack of the snow pit. 
 
The linear regression analyses found that snow pack densities from the Actual-Conditions data 

set were significantly positively correlated with SWE estimates derived from the Swath AMSR-E 
data. This was expected since dense and complex snow packs have been shown to amplify 
scattering and tend to produce remotely sensed SWE overestimates (Sokol et al., 1999). The 
Swath AMSR-E imagery was the only remote sensing data set to show such a statistically 
significant correlation, likely because — since they had not been re-sampled to the EASE-Grid — 
these data were closer representations of the original Earth radiances originally detected by the 
sensor. 
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Table 8 shows the regression results between the Swath AMSR-E SWE estimates and both the 
Snow-Only and Actual-Conditions data sets. The Model Fit shows that both data sets match the 
satellite estimates at 99% levels of confidence. From the Unstandardized Beta Coefficients we see 
that the only significant variables are the percentage of snow cover, and whether or not one or 
more ice lenses were found in the snow pit. Interestingly, density in the Snow-Only data set 
appears not to make a significant contribution, while it is found to be significant at a 90% level of 
confidence in the Actual-Conditions data set. The Model Summaries indicate that the proportion 
of the variance in the satellite estimates that is explained by the ground observations are just 
15.8% and 17.9% for the Snow-Only and Actual-Conditions data sets, respectively. 

Table 8: Regression results between Swath AMSR-E SWE estimates and in-situ observations 
(significant coefficients are shown in bold italics) 

Swath_AMSR-E SWE Snow-Only Actual-Conditions 
1) Model Fit 0.008 0.004 
2) Model Summary (Adjusted 

R2) 0.158 0.179 

3) Coefficients  Beta 
St. 

Error Sig. Beta 
St. 

Error Sig. 
 Constant (Predicted SWE) 32.646 2.280 — 32.552 2.140 ⎯ 
 Snow_Cover_Percent 8.508 4.276 0.050 10.079 4.310 0.022 
 Depth 0.143 0.220 0.518 0.187 0.216 0.390 
 Density –6.009 6.646 0.369 19.131 11.357 0.096 
 Air_Temp –0.050 0.306 0.870 0.026 0.302 0.932 
 Ground_Temp –0.162 0.492 0.743 –0.257 0.489 0.601 
 Num_Layers 0.371 1.500 0.805 0.691 1.498 0.646 
 Land_Cover –1.555 1.376 0.262 –1.490 1.355 0.275 
 Ice_Lens –7.354 3.369 0.032 –6.738 3.267 0.043 
 Num_Lenses 0.563 3.205 0.861 –0.151 3.204 0.963 
 Total_Lens_Thickness 0.108 0.647 0.868 0.214 0.643 0.740 

 
Similar regressions were run between all of the remote sensing and in-situ data sets. The results 

are summarized in Table 9. Regression models derived for the 12.5k AMSR-E 18.7v and 25k 
AMSR-E SWE data were not statistically significant. Regressions from the AMSR-E TB found that 
the 18.7v TB resulted in having more significant variables than those collected from the 36.5v TB. 
While the Snow_Cover_Percent, and Ice_Lens variables were found to be significant in both TB 
regressions, Depth and Ground_Temp were found to also be significant in the 18.7v TB regression. 
With the 12.5k AMSR-E data it is interesting to note that in comparison to the non-gridded 
Swath_AMSR-E analyses a completely different set of variables, except for the binary variable 
Ice_Lens, was found to be significant. The significant variables in this data set include: Depth, 
Air_Temp, Land_Cover, and Ice_Lens. However, as these data have been re-sampled, there is less 
confidence in these regression results compared to those of the swath results. Unlike the 12.5k 
AMSR-E regression results, the 25k AMSR-E 18.7v TB were found to be significant, and the 36.5v 
TB were marginally significant. The 25k SSM/I SWE regressions produced nearly identical results 
between the Snow-Only and Actual-Conditions data sets. 

 
 
 
 
 



 

Table 9: Regression results between remotely sensed SWE estimates and in-situ observations (·denotes a statistically significant correlation) 
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CONCLUSIONS AND DISCUSSION 
Although statistically significant models were established between many of the remote sensing 

and in-situ data sets, the proportion of the variance in the satellite estimates that could be 
explained by the ground observations (i.e. the Model Summaries) was, at most, 0.31. This 
suggests that either the ground data are insufficient for deriving SWE from spaceborne passive 
microwave observations or that the remote sensing data were inappropriate. We know from 
previous research (reviewed earlier) that it is possible to obtain reliable SWE estimates through 
remote sensing, so we must conclude that there were problems with remote sensing data we used 
in this experiment. Specifically, the continuous snow cover assumption embedded in the MSC 
passive microwave SWE algorithm does not produce acceptable results over a patchy snow cover. 
The poor performance of the MSC SWE algorithm for each remote sensing data set evaluated 
confirms that the algorithm fails under patchy and variable snow conditions. 

In spite of the poorly articulated regression models, there were several in-situ observations that 
appear to play an important role in affecting the satellite passive microwave data. The presence or 
absence of an ice lens in the snow pack was consistently identified as a significant coefficient in 
the regression analyses. Other observations that may prove to be useful include the percent snow 
cover, snow depth, and the ground temperature. These will need to be investigated further. 

Consideration of patchy snow cover is challenging from a ground sampling perspective, 
however this study shows that the actual conditions found at each sampling site must be 
incorporated in ground-truth data sets when collecting observations over a partial snow cover. 
Subsequent analysis will focus on using optical data to determine snow cover fraction within a 
passive microwave grid cell to greater quantify the impact of patchy snow cover. 
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