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ABSTRACT

Operational winter meteorology deals with problems that depend on the area, volume or
number of snowflakes in the air. The irregular shape of typical, aggregated snowflakes,
requires special techniques for calculation of area volume or number from mass precipita-
tion data. Atmospheric aerosols, paint pigments, and other fine particles have very ir-
regular shapes but are several orders of magnitude smaller than snowflakes. The statisti-
cal techniques developed to describe these fine particles can be applied to snowflakes to
estimate the visibility, rate of surface coverage and other area- or volume-dependent
operational parameters. It appears that these techniques can be broadly applied to
generalization of the physical properties of airborne snow.

INTRODUCTION

Numerous problems in operational meteorology require some knowledge of the properties
of airborne snow. Transportation in cold regions is dependent on visibility, and some-
times radar penetration through falling snow, as well as the obscuration of obstacles and
objects by fallen snow. The rate at which impurities are removed from the air depends
upon the volume of air swept by the falling snow. Electrical properties of air depend on
the number of flakes suspended.

Empirical formulas, dependent on mass precipitation, have been developed to estimate
radiation penetration through suspended snow. This paper will attempt to begin a general-
ized approach to prediction of the area occupied by falling snow, the volume swept by
falling snow, and the rate of area, rather than mass precipitation of snow. This attempt
will be made by applying statistical size distribution techniques used in aerosol physics
and fine particle technology to describe the area and volume properties of snowflakes.

FORMULATION OF THEORY

The initial discussion will be confined to dendritic snow flakes, as they are common
but represent the most difficult and irregular shape to handle in a theory. We can begin
with the fundamental precipitation formula:

Precipitation Rate [P] = Concentration [C] x Fall Speed [S]

P=2CS . (1)

The concentration [C] refers to the mass of snowflakes suspended in a unit volume of air
at an instant in time. If all the snowflakes were the same size, we could express the
concentration as the number [N] of snowflakes in the volume times the mass [M] of the in-

dividual snowflake, or

C =M ‘ ' (2)
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for what we would call a monodisperse distribution of snowflakes falling through a volume
just above the surface. The fundamental precipitation formula then becomes

P = NMS _ (3)
for a monodisperse snowfall.

Nature does not provide a fall of monodisperse snowflakes. The flakes themselves
arise from an assemblage of individual crystals, and aggregation of the flakes continues
throughout their fall. The statistical techniques reviewed by Herdan [1960] to describe
irregular materials allow us to break the distribution of snowflake sizes into discrete
size intervals, and sum over several intervals to accurately arrive at representative
values of the properties of the whole distribution. These statistical techniques can be
best applied if we initially establish regular size intervals to define the classes, and
if we close the distribution by actually determining the largest and smallest particle.

We can rewrite eq (3) to provide the precipitation rate, P., in any given size inter-
val M; < Mi < M, defined by the mass of the snowflakes in that interval. As a convention,
we will usé the largest snowflake mass, M,, as Mi to define the mass of the flakes in the
class.

The precipitation rate Pi in any size interval can then be expressed as

P, = N, M, S, (4)
where N. is the number of flakes in the interval, M, the mass of the largest flake, and S,
the fall speed of the largest flake. Summing or integrating over the size distribution
will give the total rate of precipitation

i
largest

P = Z N.M.S, (5

i
smallest

The mass M and fall speed S of individual snowflakes and snow crystals have been ob-
served and measured in the laboratory and in the field by O’'Brien (1970), Jiusto and
Bosworth (1971) and Locatelli and Hobbs (1974). These observations relate the diameter of
a circle to the observed area of the irregular snowflake in the horizontal plane. The
mass and observed fall speed of the flake are then related to the equivalent circular
diameter, as a power law relation fitted to the data.

The empirical relationships determined by Locatelli and Hobbs (1974) for radiating
assemblages of dendrites, using diameter (D) in millimeters, are

5 Dl.6

M (grams) = 1.7x10° (8)

S (M/S) = 0.8 p0- 14 (7

These empirical relations allow us to present the precipitation formula in an empirically
more useful form:

Dlargest
P = X N, (1.7x10°° D}"‘)(o.s D(.)‘U*) (8)
i i i
Dsmallest

and also to express

an area to mass ratio for the snowflakes

0.00 & p2
1.7x107° D" t

where D is defined as

the equal area circular diameter.
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Equations 8 and 9 permit calculation of the precipitation rate P, in terms of mass or
area, if we know the number concentration of snowflakes, or the size distribution of the
snowflakes. -

The size distribution of falling snowflakes, was determined on numerous occasions by
O'Brien (e.g. 1970) and Koh* during the CRREL SNOW experiment series. They identified and
described the crystal type, the largest and smallest flake diameter, and counted the
number of flakes in each 0.l1-mm equivalent diameter class. These measurements are
especially valuable for this type of analysis, as airborne snow mass concentration [C in
eq (1)], mass precipitation rate, light transmission and meteorological parameters were
frequently available concurrently with snowflake size distribution. Six instances were
available from the SNOW series data, in which unrimed dendrites and/or radiating assem-
blages of unrimed dendrites fell during periods of light (< 3-m/s) wind.

The number of particles in each size class was summed sequentially to provide a
cumulative distribution with respect to size, i.e., the number of snowflakes less than the
stated maximum size, including the largest and smallest flake. The original size
measurements were based on number concentration in 0.l-mm-diameter increments from 0 to
1.4 mm and in 0.2-mm-diameter increments above 1.4 mm. The cumulative percentages of the
total number of flakes were plotted against the upper limit of the counting size. This
distributes measuring error, and makes the statement "percent number less than diameter"
precise. A smooth curve was then drawn through the plotted points.

The sizes (diameter) of snowflakes constituting the 84th, 50th and 16th percentiles
of the population were extracted. The diameter of the 50th percentile snowflake, or
median diameter snowflake, is a good characterization of the typical size. The 84th and
16th percentile diameters represent one geometric standard deviation from that median
size, according to the technique of Drinker and Hatch (1936). Size distributions are
plotted in Figure 1, and the maximum, minimum, median 16th and 84th percentile sizes are
tabulated in Table 1.

This technique of describing the equivalent size of irregular shaped objects, as used
by pigment makers and aerosol physicists, shows a regularity among dendritic snowflakes
collected over a period of 4 years at two locations. In three of the cases, Dg,/D;4 =
Dgy/Dso = 1.4. In the other three cases, more clumping has occurred and Dg,/ Dg, is
greater. This allows us to hypothesize, until someone collects and sizes dendrites from
ten or a hundred more falls, that the size distribution of dendritic snow has the bounds
plotted in Figure 1. The measurements were made as a part of a large experiment and
generally reflect snowfalls of several hours duration. Frequently large assemblages of
dendrites, sometimes called "goose feathers" seriously disrupt visibility for a few
minutes, but put little measurable water mass in the ground. Based on observations and
photographs, I have estimated the median diameter of these large dendrites at 10 mm, and
propose the size distribution shown at the right of Figure 1.

The three curves plotted in Figure 1 represent log-normal size distributions. Hatch
[1933] showed that the geometric standard deviation of number and mass distribution for a
log-normal size distribution were equal. This equality allows instant calculation of mass
median diameter if number median diameter is known, or vice versa. Examining Table 1
shows that, in three cases,

Dg4/Dso = Dso/Dys

and the distributions are log normal. The three other cases have

D84/D50 74 DSO/DIG

and are not log-normal size distributions.

* Koh, G. (1981) Snow Crystal Classification by Replication in SNOW-ONE. Preliminary Data
Report, Internal Report 715 (unpublished), U.S. Army Cold Regions Research and Engineering
Laboratory and subsequent data reports.

203



Table 1. Size distributions of dendritic snowfalls* (from O’'Brien and Koh).

Date of 18 Dec 09 Feb 09 Feb 11 Dec 14 Dec 16 Dec
collection 1981 1982 1982 1982 1983 1983
Minimum 0.093 0.24 0.085 0.298 0.337
diameter (mm)

16th percentile 0.360 0.70 0.265 0.41 0.73 0.50
diameter (mm)

Median 0.720 1.45 0.475 0.73 1.06 0.69
diameter (mm)

84th percentile 1.33 2.60 1.50 1.20 1.55 0.97
diameter (mm)

Maximum 2.78 5.12 2.85 2.72 1.63
diameter (mm)

Standard 1.85 2.07 - 1.86 1.78 1.45 1.38
deviation,

84/50

Standard 2.0 1.79 2.09 1.64 1.46 1.40
deviation,

50/16

Characteristic W W W N N N

wide or narrow

* Personal communication with H. O’Brien and G. Koh, U.S. Army Cold Regions
Research and Engineering Laboratory, Hanover, NH.
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Figure 1. Cumulative distribution of the diameters of dendrites and assemblages of dendrites,
collected by O'Brien and by Koh in six storms in Vermont and Michigan, expressed as a per-
centage of the total number of snowflakes examined. The 16th and 84th percentiles represent
one standard deviation each side of the median. The individual snowfalls are represented by
the unique symbols. The left-most plotted line quite accurately reflects the dispersion of
687% of the flakes in three events, and is called the "narrow'" (N) size distribution. The
less inclined line to the right of it represents 68% or more of the flakes in storms, and

is called the "wide" (W) size distribution. The broken line to the right is a proposed dis-
tribution for aggregrates of around l-cm median size.
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Figure 2. The area of airborne snowflakes
expressed as a function of median flake di-
Precipitation Rate = ameter, and narrow (N) or wide (W) size
0.3mm/hr -"Trace” distribution as defined in Figure 1. A
snowfall rate of 0.3 mm/hr, with duration
of less than 1 hr, would be considered a
"trace" as less than 0.01 in. would be
collected. An airborne area of 10 cm2/m3
would occupy one-thousandth of the cross
section area in a light path, and reduce
visibility to about 3 km. A trace of
"goose feathers" could reduce visibility
to a few hundred meters, while a trace
of l-mm dendrites would give a visibility
of 24 km. Clumping of flakes as illus-
0.5 1.0 2.0 4.0 8.0 trated by the dotted line, increases area
Median Snowflake Diameter (mm) at constant mass.
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All of the data plotted in Figure 1 can be enclosed between curves representative of
a log-normal size distribution of geometric standard deviation of 2, and the narrowest
size distributions have a geometric standard deviation of 1.4. This indicates that
dendritic snowfalls may originate as log-normal distributions of crystal sizes, but
clumping of the crystals during fall skews this distribution.

It is important to determine the influence of this clumping on the area and number
distribution of snow falling at a constant mass precipitation rate. The airborne area of
snow can be calculated from the area to mass ratio of the distribution. Equation [9]
shows that the area to mass ratio of dendritic snow increases with the 0.6 power of
diameter. This is very much different than the commonly used spherical approximations of
particles, in which the area/mass ratio decreases as D increases.

The suspended snowflake area, as a function of median diameter, is shown in Figure 2.
The plotted curves represent the limiting geometric standard deviations of 1.4 (narrow, N)
and 2.0 (wide, w), and the dashed line indicates the tendency for area to increase, as
clumping occurs. Figure 2 illustrates that obscuration or covering of objects by dry
dendritic snow is primarily a function of the degree of aggregation that occurs.

The airborne area in Figure 2 is the horizontal area of snowflakes, as they would
land and cover an object. The flux of this area, through a plane, is numerically equal to
the volume of air swept out by falling snow. This allows application of this analysis to
scavenging, optical transmission and surface coverage by snow.

The application of these techniques to modeling of airborne snow area and volume has
so far been limited to dry crystals. Locatelli and Hobbs (1974) and O'Brien (1970) pro-
vide exponents that can be substituted in eq (8) and eq (9) for several types of snow-
flakes. The area/mass ratio exponent is plotted against snowflake type in Figure 3, which
is a representation of the diameter experiments given for determining snow particle mass
by Locatelli and Hobbs [1974]. Examination of Figure 3 indicates that several
generalizations may be possible with respect to the area mass relationship of snow:

a) Graupels have near spherical symmetry, and the area/mass ratio decreases with
increasing particle size

b) Rimed crystals approach planar symmetry, and the area/mass ratio remains nearly
constant with particle size.

¢) Unrimed assemblages of crystals have an assymmetry that increases the area/mass
ratio as size increases.

These generalizations should be considered as hypothesis at present, as the area/mass
‘rate exponents are based on observations of relatively few flakes of D > 2 mm.
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Figure 3. Snowflake types as pictured by Locatelli and
Hobbs (1974) arranged in order of area/mass ratio ex~
ponent as defined by eq (8). Graupel area mass ratio
decreases as size increases; densely rimed flakes are
nearly constant in area to mass ratio, and unrimed
crystals increase in area to mass ratio as size in-
creases. ’

SUMMARY AND CONCLUSIONS

The techniques of aerosol physics and fine particle technology have been applied as
an empirical/statistical analysis method to describe the physical properties of irregular
dendritic snowflakes. Generalized size distribution of dendritic snowflakes have been
generated, and applied to determination of the area to mass ratio of snow. The technique
should be applicable to predicting the range of airborne snow concentrations, visibility,
and radar cross section as a function of snowfall rate.

Preliminary calculations indicate that, for unrimed dendritic snowflakes and their
aggregates, clumping of flakes to produce a larger median size greatly increases the area
of suspended snow at a constant precipitation rate. This increase in suspended area with
respect to precipitating mass is greatest for unrimed crystals. The model and calcula-
tions show consistency with accompanying observations, but only six storms have been
observed.

This initial set of calculations was performed on dendritic snowflakes, as these are
the most irregular flakes and commonly fall under calm conditions, simplifying sampling
and analysis. The applicability to other flake types is probable, but has yet to be
analytically examined. The techniques and analysis presented here are derived from a
narrow experimental data set. It is necessary to examine a much larger number of
snowfalls, especially very light and very heavy falls, to determine the natural range of
snowflake size distribution.
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