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BSTRACT 

Spatial variation of snow depth and Snow Water Equivalent (SWE) is an essential component in 
d predictions and water resource management. Satellite microwave data can be used

stimate snowpack properties. Microwave Brightness Temperatures (Tbs) have been used by 
ote sensing community for estimations of snow depth and SWE. Snow

epth, density, and snow grain) highly influence the microwave scattering. 
 this research, we investigate potential of microwave Emissivity data (em) in improving 
ated snow properties (depth, water equiva

odel from Helsinki University of Technology (HUT) was employed to generate the (Tb) and 
 which were evaluated with satellite microwave measurements. The comparison of Brightness 

emperature (Tb) and Emissivity (em) data shows that over the deep and medium snow, 
htness Temperature (Tb) in 37GHz is a better estimator of snowpack while over the shallow 
fresh snow, emissivities in 85GHz show higher capability in esd timating of snowpack 

roperties. In summary, using both (Tb, em) can results in higher accuracy of estimated snow 
roperties. 

eywords: snowpack properties, passive microwave, remote sensing, snow emission model 

TRODUC

A A), floods are one of the most 
ommon hazards in the United States. A re-analysis of the National Weather Service (NWS) 

ed that flood damage has been despite local and feder

ccording to the Federal Emergency Management Agency (FEM

w al efforts to mitigate floods. One of the 
ost common reasons of floods is rainfall on the snow covered area. During the melting seasons 

ipitations tend to occur in the form of rain rather than snow. When rain accompanies melting 
now, the melting process is accelerated, causing unpredicted floods. An adequate knowledge of 
now is necessary for use in hydrological, meteorological, and hydro-climatological models for 

d, weather forecasting, and water resource management. Snowpack is a complex medium with 
arge spatial and temporal variability, which consist of several layers with different densities and 

n size distributions.  
he launch of earth observatory satellites in the mid-twentieth century and their capability to 
rve the earth on large scales encouraged the meteorologists and hydrologists all around the 

orld to find alternatives for traditional methods of estimating snowpack properties. 
r decades, visible satellite sensors such as Land Remote Sensing Satellite (LANDSAT), 

ti-spectral Scanner (MSS), and LANDSAT Thematic Mapper (TM) were monitoring the 
hern Hemisphe
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In  model developed by Helsinki University of Technology (HUT). 
UT is semi-empirical model which combines theory with results from measurements. The 
bjective of this study is to investigate the potential of Emissivity data (em) in improving 

estimation of snowpack properties (depth, water equivalent) which are essential components in 
flood forecast. 

In initial stage of this study, we investigated sensitivity of snow parameters to TB and em of 
different SSM/I frequencies (19, 37,85GHz) and their scattering signatures. Then, we compared 
the performance of Tbs and em data in their potential in estimation of snowpack properties (depth, 
water equivalent, and grain size) using HUT model. At the end, we derive and qualitatively 
evaluate the time-series of snowpack properties estimated by Tb and em microwaves. 

2. STUDY AREA 

The study area is in the Great Plains, North of the USA and south of Canada, located between 
45N-52N and 96W-114W including, North Dakota, South Dakota, Western Minnesota, Eastern 
Montana, Sothern Alberta, Saskatchewan, and Manitoba (Fig 1).  Great Plains have a long history 
of snow-melt related floods. The 1997 Red River flood in Grand Forks, North Dakota resulted in 
record-breaking flood devastation.  

The northern Great Plains is an ideal laboratory for the development of passive microwave 
snowpack algorithms. The region has relief on the scale of the passive microwave sensors, 25km 
to 50km, and consists mostly of open prairie or farmland. Wintertime temperatures are generally 
quite cold for extended periods of time, which limits melt-freeze effects. The snowpack in this 
area is less than 1m deep; moderately cold; subject to wind drifting; and contains large annual 
variations and spatial variations on length scales of tens kilometers [10]. 

 

ight condition without providing any information of snow depth or Snow Water Equivalent 
E). 

Contrary to visible band, microwaves can pass through precipitating clouds. This ability of 
rowaves is due to the fact that they have long wavelengths, which fact allows the wavelengths 

o pass through clouds. Satellite-borne passive microwave imagery started with the Nimbus 
ram in 1963. By the launch of Nimbus 5 in 1972, the first microwave satellite imager wasrog  

uccessfully positioned in space. The original mission of Nimbus was to map global rainfall rates, 
shortly after the launch the mission evolved into mapping global sea ice coverage. Mapping  

he snow did not start until the launch of Nimbus 7 with a Scanning Multi-Channel Radiometer 
SMMR) on board. SMMR multiple channels and their spectral difference permitted better 
etection of the land covered by snow. Using spectral difference between channels led researchers 

e first global snow mapping algorithm [1].  The legacy of microwave imagery continued with 
he Defense Meteorological Satellite Program (DMSP) and the Special Sensor Microwave Imager 

SM/I). Having 7 channels and four frequencies, SSM/I became a very successful instrument, 
eplacing its predecessor, SMMR. 

Microwave radiation responds to snow properties such as density, depth, grain size, 
emperature, surface wetness, melting-refreezing cycles, and vegetation. Most of the algorithms 

iously used for estimating snowcover from spaceborne microwave radiometer are
ormulas [1, 6]. These algorithms are restricted because they use regional empirical regression 

ficients. It is also possible to develop inversion techniques by
xperimental data and/or emission models. The benefit of the emission models is that the use of 

irical coefficients can be avoided. Several models have been proposed in the literature to 
ribe the relationships betw

tc., and electromagnetic quantities [7-9].  
 this study we employed a

H
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Figure 1. Great Plains, source: solpass.org. 

3. DATASETS 

rizations (H, V), with 
ex

arameter (e) can have higher potential to monitor changes in snow properties. 
Microwave emissivities are estimated from SSM/I observations by removing the contributions of 

Cloud 
Climatology Project (ISCCP). Cloud-free SSM/I observations are first isolated with the help of 

 satellite observations. Then the cloud-free atmospheric contribution is 
imate of the local atmospheric temperature-humidity profile (National 

Cen

radiative transfer. They assume the snow cover as a single homogeneous layer and the emission 
 temperature 

w wetness. 

3.1. Brightness temperature 
Satellite microwave data used in this study are from Special Sensor Microwave Imager (SSM/I) 

on board the Defense Metrological Satellite Program (DMSP. The polar orbiter observes the Earth 
twice daily at four frequencies (19, 22, 37, and 85 GHz) and dual pola

emption of 22 GHz, which is vertical polarization only. The observing incidence angle is close 
53°, and the fields of vie decrease from 43 km x 69 km to 13 km x 15 km [11]. Brightness 
Temperature (Tb) data are obtained from National Snow and Ice Data Center (NSIDC) in 25 km x 
25 km spatial resolution (EASE-GRID format).  

3.2. Emissivity 
The Brightness Temperatures (Tb) measured by satellites is function of land emissivity (e) and 

surface/skin temperature. By removing the contribution of surface temperature so Tb, the 
remaining p

the atmosphere, clouds, and rain using ancillary data from International Satellite 

collected visible/infrared
calculated from an est

ters for Environmental Predication (NCEP) analyses). Finally, with the surface skin 
temperature derived from IR observation (ISCCP estimate), the surface emissivity were calculated 
for all the SSM/I channels [12]. 

3.3. Ground measurement 
In the Northern Great Plains study region, National Climate Data Center (NCDC) in the USA 

and National Climate Data and Information Archive operated by Environment Canada make daily 
weather observations of temperature, precipitation, snowfall, and snowpack thickness. In this 
study, 28 stations in the USA and Canada were chosen to be used as the input of the emission 
model and to compare the snowpack properties variations with the pattern found in SSM/I 
observations. 

4. SNOW EMISSION MODEL 

The model used in this study was developed by Pulliainen in 1999 at Helsinki University of 
Technology (HUT) [7]. The HUT snow emission model is a semi-empirical approach based on 

from the snow cover is a function of snow depth, snow density, snow grain size, snow
and, in the wet snow case, surface roughness of the air and snow boundary, and sno
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The model also takes into account the emission emitted downward and reflected upward from the 
snow and soil bo il reflectivity model 
de

6.

nge of grain 
size (0.8-1.2mm) and a range snow depth (0-3m). The output of the model consisted of model 

 Temperatures (Tb) and Emissivities (em). Then the grain size was assumed a 
e of density (.01-.41 g/cm3) was fed into the model to show the variation of 

de

attering for a given grain 
si (Fig 3). Increase in density and depth increases the microwave scattering. Again, the 
sensitivity of microwaves is higher in high frequency band of 85GHz. This analysis indicate that, 
although, channels of 85GHz and 37GHz have the potential for estimating snowpack properties, 
but the microwaves are sensitive to density and grain size as much as they are sensitive to snow 

undary. To calculate this emission, the rough bare so
veloped at the University of Bern, Switzerland was used. [13]. The dielectric constant of the soil 

was chosen to be 3.5+.1j from [14-15]. The basic assumption in the HUT snow emission model is 
that scattering is mostly concentrated in the forward direction. The passive microwave data and 
ground measurements were used as inputs to the model to calculate variations of snowpack 
properties spatially and temporally.  

5. METHODOLOGY 

As discussed before, different land parameters and snow properties influence the microwave 
emissions. In a simplified format, Tb recorded by satellite’s sensor is influenced by land 
characteristics, surface temperature, snow depth, snow density, and snow grain size. Assuming the 
land characteristics do not change during the season, the changes in microwaves measured by 
satellite is originating from change in snowpack properties. These changes range from snowfall 
(depth increase) to snow melt (depth decrease) as well as snow metamorphic evolutions.  

In initial stage of this study, we investigated sensitivity of snow parameters to TB and em of 
different SSM/I frequencies (19, 37,85GHz) and their scattering signatures (19v,h-13v,h, 19v,h-
85v,h). We used HUT model in this analysis. The model was fed with a constant density and 
temperature, and a range of grain size and snow depth to understand the variation of grain size 
versus snow depth and Tb versus em.  

In the second stage, we compared the performance of Tbs and em data. Using HUT model we 
evaluated which channels and their “Scattering Signatures” have the highest potential in 
estimation of snowpack properties (depth, water equivalent, and grain size).  

Finally, the snowpack properties we derived over 28 stations within the study area. The derived 
time-series monitors and evaluates the changes in snow properties during winter season 2003-
2004. 

 RESULTS 

6.1. Sensitivity analysis and performance in different microwave bands 
In order to analyze sensitivity of microwave Tb and em to different snow parameters HUT 

model was used. Intially the input consisted of: constant density and temperature, a ra

produced Brightness
constant and a rang

nsity vs. snow depth and emissivity/brightness temperature. 
Figure 1 illustrates the results for both brightness temperatures (Tb) and Emissivity data (em) for 

a snowpack with density of 0.3g/cm3. It is shown that channel 85GHz (Fig 2a) and the scattering 
signatures of 19GHz-85GHz (Fig 2b) in both polarizations are highly sensitive to the changes in 
snow depth and grain size.  

In other words, in 85GHz, (Tb) and (em) show high dependency to variations in snow depth and 
grain size. The sensitivity decreases where snow depth and grain size increase and pass a certain 
threshold. For instance, given the density of 0.3kg/cm3, the 85GHz channel and the scattering 
signatures of 19GHz-85GHz are not capturing the increase of depth after 25cm. On the other hand, 
for a deeper snow, 37GHz (Fig 2a) and the scattering signatures of 19-37GHz (Fig 2b) are 
showing more sensitivity where the snow depth is higher than 25cm. 

imilar behavior is observed between density, depth, and microwave scS
ze 
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depth. Then, to reach the optimum answer in the retrieval, all snowpack characteristics must be 
solved simultaneously. 

 

 
 

ess temperature and emissivity versus snow depth and grain size for Figure 2a. Variation of brightn
37H and 85H  

 

 
 

Figure 2b. Variation of brightness temperature and emissivity versus snow depth and grain size for 19V-37V 
and 19H-85H  

 

 
 

Figure 3. Variation of brightness temperature and emissivity versus snow depth and density for 19V-37V and 
19H-85H 
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6.2. Comparison of brightness temperature (Tb) and emissivities (em) performance  
The major difference between (Tb) and (em) is the skin temperature. In the (em) the effect of 

skin/surface, temperature and atmosphere/cloud are filtered out of brightness temperature [12]. 
The use of emissivities can potentially reduce the error originating from the effect of temperature 
in snow estimations. A comparison of the performance of (em) versus (Tb) data is shown in Figure 
4a,b. The snow depth data are reported from the ground stations and the brightness temperature 
and emissivities are measured by satellite’s sensor. The black points on t

 depth and its corresponding satellite Tb, em m
he graphs represent the 

ground measured snow easurements. The curves are 
em for various snow depth and grain size. model-produced Tb and 

 

 
Figure 4a. Density 0.3g esponding brightness /cm3, measured and modeled snow depth and the corr

temperature and emissivity. 

 

 

Figure 4b. Density 0.2g/cm3, measured and modeled snow depth and the corresponding brightness 
temperature and emissivity. 
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Over the shallow snow, where snow depth is less than  0.3m, it is observed that in 85GHz the 
emissivity (em) data pe

3
rform significantly better than (Tb) data. As shown in  for the assumed 

density of 0.3kg/cm , estimated grain size in (Lat=49.92 & Lon=99.95) on 12/1/03 is equal to 1.15 
mm which is in a reasonable range for grain size [16]. Unlike emissivities, the measured 
brightness temperatures are not showing satisfactory results in estimating snow using 85GHz. The 
high error in the results from brightness temperatures is associated from atmospheric effect in 
85GHz. Similar behavior is observed for snow density of 0.2 kg/cm3 (Fig 4b). 

The results indicates that the range of grain size for emissivities (19GHz-37GHz & 19GHz-
85GHz) for all densities is between 0.3mm-0.7mm and for brightness temperature is between 0-
0.3mm.The compariso deled results 
shows that the scatterin es rather than 
brightness temperatur fluencing the 
brightness temperature  data produces 
better results. 

6.3. Time-series of snowpac

model using the measured snow depth, ace temperature, constant density, and 
brightness temperature/emissivity data from the uts of the model. Generally, snow 
grain size tends to increase during the winter season. The aged snow average grain size could be 
three to four times larger than the fresh snow. The question is whether this fact can be used to 
quantitatively define a seasonal behavior for snow grain size. Figure 6 illustrates the behavior of 
the derived snow grain size with respect to snow depth, surface temperature, and SSM/I brightness 
temperature and emissivity for the whole winter season (Dec 1, 2003-Mar 31, 2004) at station 10  
(Lat:53.31 & Lon: 113.56).  

Snow grain size decreases when, the snow depth increases. This can be related to snowfall. 
Fresh snow has smaller grains which reduces the average size of the snowpack. Snow grain size 
derived from the model using the emissivity behaves the same for both channels (37 and 85 GHz). 
Snow grain size derived from the model using the brightness temperature for both channels follow 
the same pattern as the ones from the emissivity only with a smaller range of grain size.  The 
results indicate the validity of grain growth assumption in to some exten  but it fails to address it 
quantitatively as a fun

n of the real measurements (ground and satellite) with the mo
g signature (19GHz-85GHz) shows better results in emissiviti

e data. This confirms the fact that atmospheric effects in
(Tb) data will increase the error and using emissivity (em)

k properties and microwave (Tb, em) data 
In the this approach, we investigate the seasonal behavior of derived snow grain size from the 

 measured surf
satellite as inp

t
ction of time. 
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Figure 6. Time series of derived grain size, snow depth, snow temperature, Tb, and em emissivity  of 19v-85v 
(bottom), brightness temp 19v-85v (top) at station (Lat:53.31 & Lon: 113.56). 
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Figure 7. Time series of derived grain size, snow depth, snow temperature, Tb, and em emissivity  of 19v-37v 
(bottom), brightness temp 19v-37v (top) at station (Lat:53.31 & Lon: 113.56). 

7. CONCLUSIONS 

In this study we explored the potential of satellite microwave emissivity (em) and brightness 
temperature (Tb) data in estimation of snow properties (snow depth, water equivalent, and grain 
size). The results from brightness temperature and emissivity was analyzed and compared.  
Variation of snow grain size, density, and frequency were derived from the model and was 
compared in different channel of brightness temperature and emissivities. The results shows that 
average snow grain size decrease when snow depth increase. The changes in average snow grain 
size over the layer can be explained by snow fall. Fresh snow has a smaller grain size. When snow 
fall happens, it increases the depth of snow but the average grain size will be decreased. The 
increase in the snow grain size can be associated with snow metamorphism. When snow melts the 
processes of metamorphism accelerates increasing the size of the snow grains. 

vi
ty )
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The comparison ows that the grain 
erived from emissivity data indicates emissivities at high frequency (85 GHz) and brightness 

temperature at low frequencies (37 GHz) are very sensitive to the presence of snow on the ground 
for very low snow depth. Then, over the deep and medium snow, Brightness Temperature (Tb) in 
37GHz is a better estimator of snowpack while over the shallow and fresh snow, emissivities in 
85GHz show higher capability in estimating of snowpack properties. Qualitatively, using both (Tb, 
em) must results in higher accuracy of estimated snow properties. 
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