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Measurement and Data Analysis of
Weather and Avalanche Records
Recent Directions and Perspectives with Case Studies
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ABSTRACT

Records of avalanche occurrence and countrol
efforts have traditionally been correlated to snow
and weather observations from local study plots.
Recent attempts to rank or score the sensitivity of
various  study plot and  meteorological
observations to avalanche activity are reviewed
with discussion on the utility of different methods

interelationships among variables are difficult to
transfer from one practitioner to another, and
usually require long periods of apprenticeship and
field practice. In addition to the difficulties with
conventional  forecasting  techniques, legal
precedents show that litigation in avalanche-
related cases can depend on computer-aided
analysis of avalanche and weather data (cf.
Kennedy, 1984; Penniman, 1986).

of analysis, The discussion is expanded by One of the fundamental problems of statistical ar
showing examples using decision-tree deterministic studies is to describe the dependent

methodology on data from a site under a maritime
climate regime. It is shown that characterization
of avalanche activity does not seem to affect the
ranking of important variables, but it is important
to overali classification accuracy. The rank order
of the five primary variables was: new snow (24
hr) depth, snow water equivalent of the storm
snow, storm total snow depth, average wind speed
and total snow depth. The probability of correct
classification was much higher for the maximum
size class, compared with the total number of
avalanche releases.

INTRODUCTION

Operational considerations in areas subject to
avalanche damage require that high priorities be
given to collection, use and archiving of weather
data with the highest correlation to avalanche
activity. Classic works in the early literature

variable by a meaningful metric that is physically
Justified and statistically unique. Many attempts
throughout the world have partitioned avalanche
response into a variety of genetic and
morphologic classifications, These approaches
confounded comparison of forecasting methads
and results on regional and international levels.
Definitions of avalanche activity or response
range from individual path observations and
descriptions (Judson and King, 1985) to hazard
levels based on frequency of events (Elder and
Armstrong, 1986) to binary outcome of
avalanche-day versus non-avalanche-day,
ignoring positive frequency effects greater than
absent or present (Bois et al,, 1974).

Correct  identification and quantification of
independent  variables leading to avalanche
release potentially present a more difficult
problem. Again, this problem has been attacked
from a broad array of methods controlled by
model constraints, data availability, ultimate

report that the Importance of various A . .
. . . . application of results and current understanding
meteorological  variables  associated  with .
) . ot avalanche phenomena. Unfortunately, data
avalanche hazard changes with geographic

region. Moreover, experience with local factors
leading to avalanche conditions and knowledge of

availability often represents the most severe
constraint and scientists are forced to make do
with data that has already been collected. While
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these - data are’ necessary because long-term
databases are critical to all non-deterministic
forecasting techniques, they have usually been
collected  for another purpose  (weather
forecasting  for cities, agriculture, etc.).
Collection sites are often located in valley
bottoms, urban areas, and at low elevations,
which make it difficult to extrapolate to
conditions in avalanche starting zones.

BACKGROUND

No quantitative method has yet replaced the
human element in avalanche forecasting. A
long-standing challenge has been Lo identify and
rank variables that can be measured efficiently
and reliably, according to their importance as
indicators of avalanche activity. This information
can provide guidance on degree of avalanche
activity, identify outlying conditions which may
be important to control activities, aid in training
new professionals and suggest priorities for
maintaining measurement programs. Recent
work has become increasingly quantitative, in
both the weather and terrain variables evaluated
and the avalanche activity parameters, Great
improvements have been made in physically-
based deterministic modeling, but we believe it is
likely that future avalanche forecasting aids will
arise from hybridization between empirical and
physically based modeling because of the
intensive data requirements of physical models.

Perla (1970) revisited Atwater’s (1954} ten
contributory  factors for avalanche hazard
evaluation and found precipitation and wind
direction to be the most important parameters.
Fshn et al, (1977) compared conventional
forecasting techniques with four statistical
methods ranging from principal components
analysis {PCA) and discriminate analysis of local
and regional data to cluster analysis of local data.
They found that all the methods produce about the
same results at 70 to 80 percent accuracy, with
some slightly better than others. Each method
had distinct advantages and disadvantages.

The nearest-neighbor method has been applied in
a number of climates with a variety of input
variables. Buser (1989) gave results from a
nearest-neighbor forecasting program introduced
by Buser (1983) and used operationally in
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Switzerland by the ski patrol in the Parsenn area.
The program identified the ten days in the record
with the most similar conditions to the day in
question. Similarity is based on the proximity of
weighted meteorological and snowpack variables
in data space. The program also creates
“elaborated” variables, for example the time-trend
in a particular meteorological measurement.

Buser et al. (1985) reviewed a broad range of
avalanche forecasting methods for short and long
time scales and over local and regional spatial
scales. Input data collected by conventional field
methods and by instruments designed and built
for specialized tasks, such as FMCW radar, were
discussed for different applications. Forecasting
methods from conventional induction to complex
statistical models were reviewed.

Although not directly addressing forecasting,
Jaccard (1990) used fuzzy factorial analysis to
identify important interaction of avalanches
related to snowpack, meteorology, terrain and
vegetalion parameters based on expert opinion.
Slope angle and aspect, overall weather
conditions and precipitation were found to be the
most important factors related to avalanches.

Avalanche hazard forecasting has been addressed
from a number of different angles and approaches
from nearly all of the affected regions of the
world. Tables I and II summarize some of the key
research on the subject. The lists in Tables I and
If are not exhaustive and represent only a portion
of the research published in the English language.
However, a survey of the literature and
conversations with practitioners indicate that
even with considerable eftort devoted to the
subject, we can still only forecast avalanches to
an accuracy of about 80 percent. We must
develop new techniques and methods, both
deterministic and statistical, in order to improve
the accuracy of forecasting capabilities.

In the following section we review the
methodologies proposed by Davis et al. {1992),
to illustrate a recent approach using binary
decision trees, Examples analyzing a data set
from Manunoth Mountain, California show the
types of weather data common to many
avalanche-prone areas and the types of avalanche
response parameters of interest to operational
field programs.




Table I. Key articles

in literature on quantitative analysis imethodologies.

Study (date}

method

data inputs

Judson (1973)

regression analysis
discriminant analysis

meteorological (localfregional)
snowpack
artificial avalanches

Bovis (1977)

discriminant analysis

meteorological (local}
snowpack

avalanche days
wet/dry avalanches

Fohn et al. (1977)

conventional

meteorological (local/regional)

Obled and Good (198

principal components
discriminant analysis

snowpack
avalanche days
wet/dry avalanches

Buser (1983, 1987, 1989)

nearest neighbor

meteorological (lecal)
snowpack
avalanche days

Jaccard (1990)

fuzzy tactorial analysis

meteorological (local)
terrain

vegetation

snowpack

Davis et al. (1992)

classification tree

meteorological (local)
snowpack
avalanche days

McClung and Tweedy (1993}

univariate correlation analysis

meteorological (focal)
snowpack
avalanche activity index

Table 1I. Advantages and disadvantages of using selected quantitative methods.

METHOD

ADVANTAGES

DISADVANTAGES

conventional

-wel| established
~time-tested

-difficult to teach
-site specific and anecdotal

discriminant analysis

-effective -years of experience necessary
-resuilts increase with experience
-algorithm dies with forecaster
univariate correlation -simple -only gives univariate relationships
analysis -will not identify variable interaction
principal components -objective -sensitive to data errors

-need large data set

nearest neighbor

~-memory aide to forecaster
-defacto database results

-sensitive to data errors
-need large data set
~does not forecast
Just gives similar conditions

deterministic methods

-satisfy ultimate goal of being
-physically based

-not yet effective or well-developed

-massive data requirements

-data requirements include
uncommon variables

binary tree
classification/regression

-well suited to mixed data types
-handles hierarchical relationships
-handles nonlinear cases
-simple to interpret results
-can control model fit
-can control objectivity/subjectivity
-emulate other methods

{nearest neighbor, etc.)
-handles missing data well

-need large data set
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TREE-BASED MODEL BASICS

There are two types of simple binary decision
trees; regression and classification. Regression
trees are appropriate where the dependent
variable is a ratio scale data type. In other words,
it the dependent variable can assume any value
over the range of observations, and if the
differences are quantitative and consistent, then
we want a model that can predict these values and
one that is not constrained to particular members.
An example is number of avalanches per day. A
regression model will predict somewhere between
zero and a reasonable maximum number of
avalanches for a given day based on the
independent variables.

A classification tree is appropriate where the
independent variable itself belongs to the data
types nominal (named) or ordinal (ordered).
Nominal data includes such variables as slope
aspect: east, west, etc. Ordinal data exhibits
relative, rather than quantitative ditferences: for
example, magnitude | through 5 avalanche
events. Avalance magnitudes, like earthquake
magnitudes, are expressed on a log scale of
magnitude. The difference is that earthquake
magnitudes are objectively measured, while
avalanche magnitudes are estimated by an
observer. Thus a magnitude 4 event is Jarger than
a 2, but not necessarily 107 as large. A regression
tree would not make sense in this case because it
would predict unsuitable results such as a
magnitude 2.76 or 4.89 event.

The type of model chosen, regression or
classification, depends in part on the dependent
variable type. You cannot apply a regression tree
model to classification data. However, you can
apply a classification tree model to ratio scale
data by generalizing the data into classes. Days
with any avalanche activity could be called
"avalanche days” and days without activity called
"non-avalanche days" (as has been done in many
previous studies). Then a classification tree
model could be used on number of - events
observed, where the observations have been
reexpressed into nominal data, avalanche versus
non-avalanche days.

Advantages of tree-based regression  and
classification models over alternative methods
{such as those listed in Table I) include:

» The models are not affected by monotone
reexpressions  of data, so  results are
independent of data form and magnitude. In
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other words, linear mathematical operations
such as addition or multiplication can be
performed on the data without atfecting the
results. This characteristic also means that
one variable may be expressed in millimeters
and another in kilometers without affecting
the model.

« Gaussian assumptions are not violated by the
distribution of one or more independent
variables, {tree-based methods are
nonparametric or "distribution free"). Trees
are valid even using mixed data sets
containing multiple distributions. It is not
necessary that data be normally distributed or
that non-normal data be transformed before
analysis.

Modei results are iess dependent on missing
values in  the independent  variables
(methodology finds "surrogate” values for
each decision node). Many statistical models
cannot use data sets where one or more
attributes for a given observation are missing.
Binary trees can use the existing data to
statistically predict what the missing elements
should be, or to use only the elements that do
exist.

Tree-based models allow complex interactions
between the independent variables, which
must be specified ¢ priori in standard linear
models. For example, snow accumulation
may increase up to a critical elevation, then
decrease with increasing elevation above that
critical point. Standard linear models can
only take advantage of that fact if a
mathematical expression for the relationship
is formulated and expressed before model
implementation.

« Interpretations of complex interactions are
clear and often more easily understood than
other model constructions, A tree is far more
easily interpreted by most people than
mathematical  expressions or nonlinear
equations.

Binary decision trees or predictive tree classifiers
of the type used in this study take a vector of
measurements X, (x,,,m =12,..} of variables
from the measurement space X of a result y and
each of the possible classes. The tree is
constructed by repeated partitioning of subsets of
X into two descendent subsets or nodes, where X
itself' is the root node and the partitions end in a
set of terminal nodes. The terminal nodes are
assigned a value based on the probabilities that



they belong to a given class y. The partition or
split at each node is made on the values in y
conditionally on values in the sample vector x,
based on a single variable in x. For ordinal or
ratio scale data, splitting decisions are posed in
the form: is x,<c ? where ¢ is within the
domain of x,. PFor categorical variables, the
decisions may be expressed as: s x, € § 7,
where § includes all possible combinations of
subsets of the categories defined in x,,.

In the present study these decisions take the form:
is new snow depth <10inches or is the snow
surface temperature £—4.0° C 7 The categorical
analog would be similar to: does the azimuth of
the starting zone of path x, belong to the subset
north 7 A portion of the finished binary
classification tree may look like the following:

if (85T, £65°C) and
(MAXWS, < 21.5mph)
then  avalanche activity AA, is

most likely to be in final decision class AA,

and a final decision set for a node in a binary
regression tree may look like the following:

if (SST, £6.5°C) and
(MAXWS, <21.5mph)
then | avalanche activity AA; is
most likely to produce 22 releases
under current conditions,

where SST, MAXWS, AZ are the independent
variables of snow surface temperature, maximum
wind speed, and slope azimuth, respectively; { is
the co-registered datum of the variables.

A callection of such decision rules is obtained
through a technique referred to as recursive
partitioning. Three elements must be defined
before the sample data may be recursively
partitioned into a binary decision tree:

1) method for determining the best split at
each node,

2) basis for deciding when to continue or stop
splitting a node,

3) method for assigning class probabitities for
each terminal node.

The details of these decisions are beyond the
scope of this paper but are explained at length in
the standard reference on classification and
regression trees (Breiman et al., 1984). We have
used both the tree-based model implementation in
CART (Breiman et al., 1984) and in the S-PLUS
mathematical language, which follows closely the

147

development in Breiman et al. (1984). Both
software packages have unique advantages and
the user should explore both implementations.
Details of the S-PLUS software are explained in
Chambers and Hastie (1992). Two applications of
tree based models in the natural sciences can be
found in Michaelsen et al. (1987 and in press).

The output of the software packages includes a
ranking of the independent variables in order of
importance as primary decision makers, or as
surrogates for other independent variables, as well
as the decision tree. This is the focus of our
discussion.

EXAMPLES  USING  DECISION-TREE
METHODS AND DISCUSSION

In the earlier study, Davis et al. (1992) aggregated
the avalanche observations into three classes: 1)
days with no avalanches or control activities, 2)
control days with no avalanches and 3) avalanche
days, in which any notable release was the
threshold. criteria. Results showed that class |
days were classified with about 99 percent
accuracy, but class 2 and 3 days were classified
with 86 and B0 percent accuracy, respectively.
Although this study offered little in the way of
guidance about the degree of avalanche activity,
it did show [) the promise of using this method to
rank snow plot and weather data, 2) the difficulty
in distinguishing control days with and without
releases, and 3) the potential for better results
using different response variables or more data,

In this study, as in Davis et al. (1992), decision
tree methods were applied to observations from
Mammoth Mountain, California at elevations
from 2,590 to 3,371 m in the eastern Sierra
Nevada, Mammoth Mountain is the major site of
the Mammoth/June Ski Resort, and is subject to
frequent direct action avalanches, where releases
commonly occur within a few days of winter
storm events. As in Davis et al. (1992), we used
data from two winters, 1989-1990 and 1990-1991,
which consisted of snow plot measurements,
weather  variables and  avalanche  release
observations. The two-year data set consisted of
380 cases (days) of which there were no days with
missing data. The weather and snow data were
collected from a snow study plot by the Main
Lodge at Mammoth Mountain, at an elevation of
2,743 m on the northern base of the mountain.
Avalanche observations were from the entire in-




bounds ski arca. Variables used for this analysis
were those recorded at the study plot or neacby, as
listed in Table III.

Table III. Input data used in CART analysis from
daily data record.

[)  Total snow depth (inches)

2)  Storm total snow depth (inches)

3)  New suow depth (inches)

4)  Snow water equivalent - storm (inches)
5)  Fractional density, new snow  (percent)
0)  Average wind spzed  (mph)

7y  Maximum wind gust speed (mph)

8)  Maximum 24-h air temperature (" F)
9)  Minimun 24-h air temperature  (° F)
10)  Current air temperature (© F)

11)  Snow surface temperature (" C)

Control activities and avalanche observations
were recorded at Mammoth Mountain in a format
consistent with the standard U.S. Forest Service
avalanche control and occurrence chart. This
protocol consists of codes for the date, time, path,
patroller identification, control type, control
number, control surface, avalanche class type
(hard siab, soft slab, etc.), avalanche trigger
mechanism, avalanche size, and so forth (Perla
and Martinelli, 1978). 1t should be noted that the
avalanche size class is somewhat subjective when
comparing the data from ditferent areas, but
consistent within this study area.

Avalanche observations were aggregated into two
response variables, the total number of avalanche
refeases on a given day, and the maximum size
class. Qur premise for specifying these avalanche
activity characteristics was that the nwnber of
releases may provide an indication of how
widespread the avalanche hazard (.e. spatial
dispersion), and that the maximum size may
provide an index of the local intensity of the
hazard. Therefore, a regression tree method was
used to evaluate the data with the total number of
releases  as  the response variable; and a
classification tree method was used o evaluate
the data with the maximum size class on a given
day as the response variable.

Both the regression tree and the classification tiee
analyses produced the same ranking of weather
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and snow plot variables (also the same as Davis et
al., 1992). This shows the robustness of the
method. Table IV shows the ranking. The first
five variables in Table IV contributed most of the
information critical to the model fit, The rest
showed minor importance as decision criteria or
surrogates. The first three variables are measured
manually by patrollers at the snow plot, the
depths observed on snow boards and the water
equivalent measured with hand-held equipment,

The overall probability of a case falling into the
correct terminal node for the regression tree (total
number of releases with a range 0 - 41} was 0.68.
The probability of correct classification for the
classification tree (maximum size class with a
range U - 5) was .95, Although preliminary,
these results indicate that two things: I) the
ranking of variables in terms of sensitivity to
avalanche activity appears insensitive to the
avalanche response vartable for the examples here
and in Davis et al. (1992); 2) the binary tree
methods (both classification and regression) may
be valuable tools for avalanche forecasting and
may provide a mechanism for improving results.
In order to test this technique effectively and
objectively, we need to study other data sets from
areas with longer records which will allow model
construction and validation either through unique
elements or cross validation. We would also like
to test the method in different snow climates to
assess model performance and objectively
confirm the existence of ditferent snow climates
and avalanche response. Both studies are in
progress at this time.

Table IV. Ranking of weather and snow plot
variables

New snow depth -

Snow water equivalent storm
Storm total snow depth
Average wind speed

Total snow depth

Fractional density

Snow surface temperature
Maximum wind gust

Current air temperature
Minimum 24-h air temperature
Maximum 24-h air temperature




SUMMARY

Various statistical techniques have been tried to
rank critical variables in terms of their sensitivity
to  avalanche activity,  Classification and
regresston  tree  methodology shows promise
because of distinct advantages over standard
statistical techniques. While the ranking is robust
with respect to the choice of dependent variables
describing avalanche activity, the accuracy of
classification  and  regression trees  shows
sensitivity to the choice of the dependent
variables, In the example used for discussion in
this work, the methodology was better at correctly
classifying the maximum size of releases than it
was at predicting the total number of releases.
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