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ABSTRACT

In this paper we develop a quantitative analysis of uniaxial crystal orientation
data. Though the method is general, we focus on the application of the analysis to ice
fabrics. The crystal orientation data are represented as points on the surface of a unit
sphere. An orthogonal least-squares error measure is used to develop equations that
define the closest plane and line through the data while retaining all coordinate direc-
tions as independent variables. For comparison, a parallel development is presented of
the standard dependent variable least-squares determination of the best plane. The
orthogonal error measure quantifies the goodness-of-fit to the data of all approximate
representations. Finally, a technique is developed to generalize from the standard
Schmidt net presentation of data in the xy-plane to a presentation in any of the three
planes defined by the Cartesian coordinate system.

INTRODUCTION

Ice crystals are uniaxial, and crystal orientation measurements describe the optical
c-axis orientation of each crystal in a particular sample. Research in ice mechanics
(e.g., Richter-Menge et al. 1986) has shown that there is a strong relationship between
the behavior of ice and its crystal structure, including the relative orientation of the
crystals. Environmental conditions at the time of formation determine the ice structure.
Random c-axis orientation is typical near the top surface of a sea ice sheet. Once a
cover has formed, the ice structure is characterized by long vertical columns that extend
downward in the growth direction of the ice sheet, a result of quiescent, unidirectional
growth. Under these conditions a selective growth process occurs, and the c-axis is
primarily oriented in the horizontal plane of the ice sheet (Weeks and Ackley 1982). 1In
the presence of a predominant current direction, strong c-axis alignment develops in the
direction of the current with decreasing scatter as ice thickness increases (Weeks and Gow
1978). 1In this case the ice structure results in a material that behaves anisotropically
in all directions. The analysis of uniaxial compression data on first-year sea ice
(Richter-Menge et al. 1986, Wang 1979) has indicated a strong dependence of peak compres-
sive strength on c-axis alignment and direction. The angle between an applied load and
the dominant c-axis direction, and the angle between the load and the direction of crystal
elongation are of particular interest. Therefore, to interpret data from mechanical
property tests it is necessary to define the relative orientation of the ice fabric.

Langway (1958) describes techniques for obtaining ice crystal orientation data using
a Rigsby universal stage. The techniques used in the analysis of ice fabrics were origin-
ally developed in structural petrology (Fairbairn 1949, Knopf and Ingerson 1938, Turner
and Weiss 1963). One orientation measurement is made for each ice crystal in a sample,
and these data are plotted on a Schmidt equal area net (Fig. 1). The points on the net
are an orientation diagram, and this representation reduces the dimension of the hemis-
phere and of any plane or line by one. The pole of a plane is the point of intersection
with the hemisphere of a line normal to the plane through the origin. The dimension of a
plane can be reduced again by representing it with its pole. An orientation diagram of a
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Figure 1: Schmidt equal area net. The standard net has a 20 cm diameter.

crystal fabric may indicate a random or a patterned structure, depending on the dominant
features of the orientation diagram. A random orientation refers to a lack of local con-
centration of the plotted points and represents an isotropic material. In this configura-
tion there is an equal probability of finding points in equal area elements anywhere on
the net. 1In contrast, the most significant feature of an anisotropic material is the
preferred orientation indicated by the grouping of points on the net. A "girdle" corre-
sponds to data that cluster about a great circle of the net, indicating a preferred planar
orientation of the c-axes. The pole of this great circle is in a sparsely populated area
termed the girdle axis. A single area of high concentration indicates a linear preferred
orientation of the crystals in the fabric. The statistical significance of the fabric
diagram increases if the main features (maxima/girdles) are reproducible in different
comparable samples from the same homogeneous body. The primary weakness of this widely
accepted methodology is in the qualitative interpretation of the data.

Our analysis provides quantitative measures of both the planar and linear structure
of materials with uniaxial crystals using standard orientation data obtained with a uni-
versal stage. For each ice crystal, the orientation of the c-axis is represented by a
line passing through the origin of a three-dimensional coordinate system. Because these
lines are symmetric about the origin, and following standard practice, the orientation of
each c-axis is represented by a vector from the origin with the direction of the line in
the half-space below the xy-plane. For equal representation of each crystal the vectors
must have the same length, and a unit length was chosen for convenience. The vectors then
yield an array of points on the surface of a hemisphere of unit radius. A plane that
passes through the origin is obtained that minimizes the sum of the squared normal dis-
tances from these points to the plane. We show that the dominant c-axis orientation lies
in this plane and obtain this linear orientation. The corresponding measures of spread
quantify the planar and linear directional characteristics of the c-axes of crystals in an
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ice sample. In a companion paper (Claffey et al. 1989) we give a detailed description of
the algorithm and program that implement this analysis.

BACKGROUND

A c-axis orientation measurement of an ice crystal with the Rigsby universal stage
(Langway 1958) yields an azimuth angle, an inclination angle, the direction of inclination
as right or left, and the type of measurement as polar or equatorial. The azimuth angle
measures the rotation of the crystal about the z-axis that places the c-axis in the xz-
plane. The zero azimuth can be chosen arbitrarily, depending on the requirements of the
analysis. Beginning with the crystal in the xz-plane, the inclination angle is found by
rotation about the y-axis. An inclination angle of zero is defined as the angle where the
c-axis of the crystal is parallel to the x-axis. From this position the crystal is tilted
either to the right or the left, and inclination angle is the direction and angle of tilt
with the x-axis. The optical axis of a crystal that has been aligned parallel to the z-
axis is termed a polar measurement, and parallel to the x-axis is an equatorial measure-
ment. The measured inclination angle must be corrected for the optical error caused by
the difference in the refractive indices of air and ice. The relationship between the
corrected inclination, I, and the measured inclination, I , depends on the measurement
type and can be expressed (Kamb 1962) as m

1.04 Im ; equatorial
I = (1)

sin-l[ L
1.31

Taken together, the azimuth and inclination measurements define the orientation of
the optical axis of an ice crystal in three-dimensional space. The surface of the lower
hemisphere of a sphere of unit radius is represented in two dimensions with the Schmidt
equal area net (Fig. 1). The crystal orientation data plotted on this net represent the
points of intersection of the unit vectors of individual crystals and the surface of the
hemisphere. The Schmidt net is composed of two sets of arcs. The set that crosses the
x-axis represents the intersection of great circle planes passing through the y-axis with
the unit sphere. These arcs are meridians of the net that correspond to inclination
angles between -90° and +90°, representing the angle between the lower half of the
yz-plane and the plane of the arc. The labels on the x-axis correspond to polar or equa-
torial crystal orientation with right or left tilt. The set of arcs that cross the y-axis
are parallels of the net, and represent the intersection of planes parallel to the xz-
plane with the sphere. The points of intersection of these arcs with the perimeter of the
net represent the azimuth angle, and the notation on the net is in degrees of angle. A
unit area in any position on the net corresponds to a unit area on the surface of the
hemisphere from which the net was derived. The Schmidt net eliminates nearly all areal
distortion, and shows the relative spatial concentration of the measured data. Additional
details that are needed for plotting petrographic data on the Schmidt net are given by
Langway (1958).

sin IHJ ; polar

DATA TRANSFORMATION TO CARTESIAN COORDINATES

We will view both the data and the results of our analysis on the Schmidt net.
Therefore, we must obtain Cartesian coordinates on the net that represent the petrographic
data from the universal stage. In addition, the position on the unit hemisphere of each
crystal in a sample is required for the analysis, and we will use a three-dimensional
Cartesian coordinate system to locate each point (Fig. 2).

The initial step in finding the net coordinates is to obtain polar coordinates (r,¥4)
on the net for each point. Defining the positive x-axis as the zero azimuth, we obtain §
directly as the recorded azimuth. - The inclination angle is used to find the radial coor-
dinate. For polar crystals the inclination angle, I, is the angular displacement measured
from the yz-plane that places the c-axis parallel to the z-axis. Polar crystals with
right tilt yield positive I, and polar, left crystals have negative I. Equatorial
measurements of I are angular displacements measured from the x-axis that place the c-axis

131



(Xm:¥m :Zm)

Figure 2: Sketch of unit vectors 1,2,...,m,...N representing the c-ax%s orientations of
ice crystals in a sample. The hemisphere, z < 0, is shown by convention.

parallel to the x-axis. Since the inclination angle on the net is from the z-axis, the
complement of I is required. Equatorial angles with right tilt are negative, and left
tilt angles are positive. Summarizing, we obtain the angle ¢ measured from the z-axis as

-1 ; polar, left
6 = I ; polar, right (2)
(90°-1) ; equatorial, left
-(90°-1) ; equatorial, right

The distance from the origin of the Schmidt net r can be determined (Knopf and Ingerson
1938) as

r = (2a)sin(¢/2) (3)

where a = 0.70711R, and R is the radius of the net. 1If ¢ is negative the radial coordi-
nate will also be negative. 1In these cases r is taken as positive and the azimuth is ad-
justed by 180°. The equivalent Cartesian coordinates are then obtained directly as

X = r cosf

(4)

y = r sinf

The initial step in finding the three-dimensional Cartesian coordinates is to repre-
sent each point in spherical coordinates (p,¢$,6). Because each crystal is represented by
a unit vector, the radius p = 1 for all the data. The polar angle §, measured from the
positive x-axis with a range of 0° to 360°, is again simply the recorded azimuth angle
when the zero azimuth is defined as the positive x-axis. The angle ¢ is measured from the
positive z-axis with a range of 0° to 180°, and can be obtained from the inclination data.
The inclination angle was measured from the negative z-axis for polar crystals and from
the xy-plane for equatorial crystals, and ¢ is determined as

(180°-1I) ; polar
$ = (5)
(90°+1) ; equatorial

With the spherical coordinates specified, the equivalent Cartesian coordinates are ob-
tained directly as

X = p sing cosé
y = p sing sind (6)
Z = p cOS¢ :
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DETERMINATION OF THE BEST PLANE BY ORTHOGONAL LEAST-SQUARES

In this section we consider the case where the fabric data are roughly in the form of
" a girdle on the Schmidt net. The problem is to find the plane of best fit to these data
that passes through the origin of the hemisphere, and to provide a quantitative measure of
the quality of the fit. The form of the equation of a plane through the origin is

f(x,y,z) = Ax + By + Cz = 0 (7)
Therefore, we choose the function F(x,y,z) = F(X,y,2z;c,,¢,,Cc3) with this same form and

depending linearly on parameters c;, c,, c; as

3
F(x,y,2) = ¢18; + Cp8, + ¢85 = ) c;b, =0 (8)
i=1

where ¢i are a specified set of functions and the ¢, are parameters to be determined.
Comparing the form of (7) and (8), we specify a mutiially orthogonal set of functions ¢i as

$, =X, ¢ =Y, 63 =2 (9)
The number of the data points used to fit the plane should be much larger than 3.
z:r a data point located at (xm,ym,zm) we can evaluate F(xm,ym,zm;cl,c2,cs) = Fm with (8)
Fm = CyXp t Coy + CaZ (10)
The unit normal to the plane F(x,y,z) = 0 is
n=-c; 1+c, i +c3 k (11)

The unit vector representing the c-axis of the mth crystal in a sample (Fig. 3) is

Up = Xg L Fy itz k=g 1+ J+és K (12)

The vector w_is the projection of u onto n (Fig. 3), representing the normal vector from
the point to the plane

_ [y
W= n = (u-n)n (13)

n-n

Throughout this development the notation (~) over a vector indicates that it does not have
unit length. The normal distance from the point to the plane is represented by the length
of w

“m

Best Fit / Basal Plane

Figure 3: Sketch of the unit vector u_ representing the mth crystal in an ice sample and
its projections v _onto the best-fit ETane or the basal plane and w_ onto n or ¢ the unit
normal vector to e corresponding plane. o
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= ~ ~ k%
]Hml = (Hm-ym) = (gm-g) = CiX + Cpy  + C3Z (14)

and with (10) we observe that

lw | =F . [F I =1

and " (15)
W =F n
“Tm m

The normal distance between the mth data point and the plane of best fit described by
F(x,y,z;c;,¢5,c3) = 0 is Fm’ and the sign Fm distinguishes distances on opposite sides of
the plane.

We want to choose the ¢, values that specify the plane so that the normal distances
between each of the N crystals in a sample and the plane

dm = Fm m=1, 2, ..., N (16)
. T . c s
are as small as possible, and some norm of the N-vector d = (d,, d,, ..., d.) is mini-
mized. The vector d represents the individual normal distances from the da§a to the plane
and serves as an "error vector." Because we consider distances normal to a plane, the

hemisphere in which the data appears is arbitrary. This fact allows us to follow the
standard practice of using the hemisphere below the xy-plane. We will seek a least-
squares fit of the data to the plane, and will use the 2-norm

N 3
ldlr, = [mZ |dm|2] (17)
=1

The square root is a monotone nondecreasing function, and minimizing ||d||, is equivalent
to minimizing ||d||% . Next, we define

N N
2
E(cl 7C2703) - ||Q||2 = mzl |dm|2 = mzl (F(Xm;ym,zm;c1 rCZJCS))Z (18>

where the abgolyte value sign is deleted because F_ is squared. The gradient of E must
vanish at (e¢;,c,,c;) corresponding to the plane ofmbest fit

* Kk %
VE(c,,c,,c3) =0 (19)
The orthogonal projection of u in the best fit plane is represented by im (Fig. 3),
and
VoS w cE mx iy Jrz k=9, 1i+¢, J+ ¢k (20)

This vector joins the origin and the point (§m,§ ,Em), the orthogonal projection of
(xm,y ,Z ) in the plane. Tge vector v is the cTosest representation of u in the plane.
From T20? we can determine Xm’ym’zm as

X =x -d c,
m m m
ym=ym - dmc2 . form==l,2,...,N
z =z -d Cg
m m m
or _
¢im = ¢im - dmci for i =1,2,3 (21)

represent elements of N-dimensional vectors Qi and éi, respectively.

m
im

where 4. and 3;
im 1

We will now differentiate (18), noting that the normal distance Fm is a composite

5 : = F2
function, Fm[F(Ci)]’ and taking h[F(ci)] Fm,

dh_ . aF_ = _

aci h' (F) aci 2 Fm ¢im (22)
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Then, using (22) we rewrite (19) as

* % % N -
VE(c;,c5,C5) = 2 Z dﬁ ¢im =0
m=1

which written in vector form is

N
d 3. =d%d. =0 for i = 1,2,3 (23)
m im

m=1 t
Equations (23) state that the error vector is orthogonal to each of the N-vectors &., and
are termed the normal equations. Therefore, the error vector is orthogonal to all
possible approximating functions composed of linear combinations of gi, specifically
Q_T-(clzl + Cg&g + csis) =0 for all c,, c,, c; (24)

where the vector (cla1 + c2§2~+ c3§3)~is the orthogonal projection of the data onto the
plane spanned by the vectors &,, ¢,, &;.

Restating (21) in vector notation and inserting into (23) we obtain

a4, - c;d) = 0

dheg, = (@Ted) e, = [4]2 ¢, (25)

or

Rewriting the left side of (25) yields
3 T
Y [d:°¢.] c. = |d|? c. , for i = 1,2,3 (26)
. j Fit 73 i
j=1
Setting the constant |d|? = ) we observe that (26) has the form of an eigenvalue problem,

Ac = Ac ‘ (27)

where the matrix

3
A= T 4]
j=1

As defined, the eigenvalue )\ is the sum of the squared distances of the data from the
plane. Equation (27) in homogeneous form,

(A-AI) ¢ =0
indicates that nontrivial solutions exist if and only if
det(A-AI) =0 . (28)
The determinant given in (28) yields a cubic equation in the form
A +pr2 + g +r=20 (29)
Following Beyer (1987) we obtain the solution as
A, = mcosB - p/3

A, = mcos(f + 2x/3) - p/3 . (30)

\ 2 27 /

A mcos(f + 4n/3) - p/3

where
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-1 (3b
B = (1/3) cos [am]
m= 2/-a/3
a = (1/3)(3q-p?)
b = (1/27)(2p% - 9pq + 27r)

The spectral theorem (Shields 1968) states that because A is a symmetric matrix it is
similar to a diagonal matrix B composed of the eigenvalues of A, and therefore the eigen-
values of A are real. Similar matrices have the same trace and the same determinant. The
trace of a matrix is the sum of the elements on the principal diagonal. The elements a,,,
a,, and ag; of matrix A represent the sum of the squares of the x-, y-, and z-coordinates,
respectively, of all the data in a sample. These values represent the squares of distanc-
es between the data and the three planes defined by the coordinate axes. Because each
crystal is represented by a unit vector,

3 3
tr(A) = ) a,. =N=tr(B) = } b, =

i=1 i=1 i

Ai (31)

I w

1

indicating that the sum of the eigenvalues is N, the total number of crystals in the
sample. The determinants of A and B are the product of the eigenvalues.

Eigenvectors of a real symmetric matrix corresponding to different eigenvalues are
orthogonal, and because the eigenvalues are real, the eigenvectors can be taken to be
real. The vector v is an eigenvector for A belonging to the eigenvalue XA if

Av = Ay and v =0 (32)
The lengths of these eigenvectors are arbitrary, and we normalize them to unit length to
obtain an orthonormal basis in three-dimensional space. Each eigenvector represents the
unit normal to a plane, and the corresponding eigenvalue gives the sum of the squared
normal deviations of the data from that plane. The minimum eigenvalue defines the plane
of best least-squares fit to the data, and the higher eigenvalues are associated with the
remaining mutually orthogonal planes through the origin. With the origin fixed, the
eigenvector basis represents a coordinate system that is rotated relative to the coordi-
nate axes. The eigenvectors written in columns form the matrix P. The elements of P are
the direction cosines between each eigenvector and the coordinate axes. For example, the
angles a; between the eigenvector n and the axes are obtained as

a, = cos‘l(g-g.) , i=1,2,3 (33)
i i
where ¢, = i, ¢, = j and ¢; = k. Because the columns of P are orthonormal, P is an
orthogonal matrix and P-l = PT , det P = * 1. Matrices A and B are related through P as
-1
B =P =~ AP (34)

The sum of the squared normal distances between the data and the best plane, given by
Am' , provides a measure of the planar structure of an ice sample. We define the mean
normal error e_ as the average squared normal distance between individual crystals and the
best plane, and

A
e =3 (35)
Values of e  approaching zero indicate an increasingly planar ice structure. A visual
representation of the error is obtained from the angle a between an individual crystal
and its projection in the best plane (Fig. 3),

a = |7/2 - cos-l(gm-g)l (36)

The absolute value in (36) is needed if the angle between u and n is greater than n/2.
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Then, the average angular deviation a between the data and the best plane is a parameter
we term the planar spread that can be readily determined and understood:

_ 1 ¥

a = ﬁ 2 o (37)
m=1

A small planar spread indicates a small mean angle between the crystals in a sample and

the plane.

DEVELOPMENT OF DEPENDENT VARIABLE LEAST-SQUARES SOLUTIONS

We will now parallel the development of the previous section to obtain a set of
dependent variable least-squares solutions to the problem of fitting a plane to three-
dimensional data. Arbitrarily selecting z as the dependent variable, we rewrite (8) as

z = F(x,y) = ¢, ¢, + c, &, (38)

where ¢, = X and ¢, = y. The coefficients c, and c, are chosen so that the deviations dm
are as small as possible,

dm =T - F(xm, Ygi 1o cy) (39)

in which r is z_, the z-value of the mth point, and F(x ,ym;cl,c2) is the corresponding
z-value in the plane of best fit. Again, we use the 2-norm of the vector d to measure
error, and write an equation for the parameter E as

N
2
E(ey,ep) = [1d]l, = ¥ [r - F(x_, y i c1, c)]? (40)
m=1

Taking the gradient of E and setting it to zero yields the normal equations

N
Y olr - F(x, yic, )] =0 , i=1,2 (41)
or m=1
T
g‘. ° Qi =0
indicating that the error vector is normal to each vector ¢.. Now, inserting (38) and
rewriting the normal equations in vector form we obtain a pair of linear equations:
2
Y (458 le. = £ 9, i=1,2 (42)
j=1 J 177] 1

The vector normal to the plane that minimizes the sum of the squared z-distances with the
data is

D=-c,i+cj-k

or in the form of a unit vector,

n = ;5(01;'*'021'.15) (43)

The normal distances between the data and the plane represented by n can then be deter-
mined using (14) as

s - 3 - - —_ \
Cs X -~ G - Z
‘o1 27 m’

= > forr m=1,2,..., N (44)
(c? + c3 + 1)

The sum of the squared normal distances given in (44) is directly comparable to the mini-
mum eigenvalue obtained in the previous section. The planes that minimize the squared x-
deviations and squared y-deviations are obtained by interchanging the roles of 4,, ¢, and
r above, and repeating the analysis.
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ALIGNMENT OF THE C-AXES IN A SINGLE DIRECTION

Alignment of the c-axes within the plane indicates a linear preferred orientation of
the ice crystals in a sample, and suggests the need to determine the predominant optical
axis of the fabric. We will locate this linear orientation by following a development
parallel to that used to determine the best plane. The unit vector ¢ represents the un-
known preferred c-axis orientation of the crystals in a sample, and is expressed as

'

+ c; i +ci k (45)

I

== !
c Cy

where the primes distinguish these coefficients from those of the unit vector p given in
(11). The plane through the origin that is normal to ¢ represents the predominant basal
plane orientation of the crystals in the sample and is described by

F(x,y,z; ci,c5,c3) = ciXx + cjy + cjz =0 (46)

As before, the unit vector u represents the mth crystal orientation and intersects the
unit hemisphere at (x _,y ,z ). In order to take advantage of the detail given in the pre-
vious development, the vector projections of u onto the plane and its normal vector are
again ¥ and W , respectively. These vectors Rave the same meaning but are not the same
vectors as those used in finding the best plane. Then, with ¢ replacing n and a different
normal plane, Figure 3 represents our present condition.

When searching for the plane that best represented the unit vectors u , we sought to
minimize the squared normal distance |w |. However, the closest representation of u by
the unit vector ¢ requires that we maximize the sum of the squares of the lengths of W
The basal plane is then the plane of maximum squared normal error with the data. Each
step in the previous development applies except that c, is replaced by c!. Note that the
matrix A in (27) is unchanged because it depends only on the coefficients of the intersec-
tions of the individual unit vectors u_ with the unit hemisphere. Therefore, we are solv-
ing the same eigenvalue problem as before. The eigenvectors obtained in (31) are ortho-
gonal, and ¢ is contained in the best plane. The third eigenvector s together with ¢ form
the plane of best fit to the c-axes, and s and n form the predominant basal plane (Fig.
4). The direction cosines of the angles between the preferred linear orientation and the
coordinate axes are given in matrix P, and the angles can be obtained from (33) with ¢
replacing n.

As with the plane, X is a measure of the linear structure of the ice sample. In
this case values of e obtatned with Amax that approach 1 indicate a more linear struc-
ture. Again using angles to visualize error, the angle § between an individual (crystal)
vector and its projection onto ¢ (Fig. 3) is obtained as

5 = cos™ ! (u +2) 47)

and the average angle § between the data and ¢ is
= _1
§=3 L ¢ (48)

The parameter § is termed the linear spread, and a small § indicates that the angles be-
tween the preferred orientation and the data are also small.

If the c-axis data from a given sample are sufficiently aligned, the mechanical
properties of the ice will be affected. If g is a unit vector in the direction of an
applied force, the angle 9. between the force and the dominant c-axis direction is

g, = cos-l(g e ) (49)

and the complement of ¢ is the angle between the load and the basal plane (Fig. 4). For
a columnar ice sample gcgives the predominant direction of crystal elongation and growth.
The angle o, between the load and the vector n also affects the mechanical properties of
the ice (Richter-Menge et al., 1987), and is obtained as

o = cost (o + ) (50)
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Figure 4: Definition sketch of the angles ¢ and o_. The unit vectors n and g provide the
predominant orientation of the basal plane of an ice sample, g is a unit vector represent-
ing the direction of load application on the sample, g is the projection of this vector
onto the basal plane, ¢ is the unit vector representing the linear preferred c-axis orien-
tation of the ice fabric, o 1is the angle between the applied load and the preferred
orientation, and o_ 1is the gngle between the load and the long axis of the columnar
crystals of an ice sample, represented by n.

SCHMIDT NET REPRESENTATIONS

The results of the analysis of an ice sample are presented together with the data on
the Schmidt net. Planes that pass through the origin, described by (7), intersect the
unit sphere as a great circle. The part of the great circle below the xy-plane is drawn
on the Schmidt net. With p = 1, (6) is substituted into (7) and solved for ¢ to obtain

-c
4 = tan'! [ : ] (s1)

c, cosfd + c, sind

where 6§ is incremented in arbitrary steps from 0° to 360°. We obtain polar coordinates on
the net from the spherical coordinates with (3), and a final transformation with (4)
yields a discrete representation in Cartesian coordinates of the great circle on the net.
The requirement of z < 0 in (6) identifies the points of intersection in the lower
hemisphere. Experience indicates that 0.5° increments of # yield a smooth curve on the
net.

The unit normal through the origin to the plane of best fit, termed the pole vector,
intersects the unit hemisphere at a point with coordinates (x_,y ,z_) or (c;,C,,Cs).
Inverting (6) we obtain the spherical coordinates of this point &s

¢ = cos-l(ca)

-1 (©2
§ = tan 1 [‘—]
c

1

(52)

There are two values of 4§ in the range 0° < 4§ < 360° that have the same tangent. If the
value of x=c, is negative, § falls in the 2nd or 3rd quadrant and the calculated angle is
adjusted by adding 180°. Again, the polar coordinate r on the net is obtained from (3),
and the Cartesian coordinates of the pole on the net are found from (4). Similarly, the
Cartesian coordinates of the vector representing the intersection of the preferred linear
orientation and the unit hemisphere are known from (42). The determination of the Schmidt
net coordinates of ¢ follows the same procedure as for the pole vector with (c;,c,,c;) in
(52) replaced by (cj,ci,c4). The intercept of the linear orientation vector must fall on
that of the great circle of the best planar fit.
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Rotation for yz-net Rotation for xz-net

Figure 5: Diagram of rotations of the (x,y,z) coordinate system relative to the fixed
(A,B,C) Cartesian coordinate system for analysis of various Schmidt net representations of
corresponding data hemispheres.

The linear dimensions on the periphery of the Schmidt net are distorted, and it is
difficult to judge normal distances between the data in this -region and the trace of the
best plane. Also, points that appear directly across the net from each other represent
crystals with close planar alignment. For these reasons it is frequently advantageous to

view the data on Schmidt nets drawn on alternative planes. With the xy-, xz-, and yz-
planes for mapping, the location of the data on the net changes and different views of the
structure of the material are available, minimizing the importance of net distortion and
measurement accuracy limitations by providing several views of the grouping of crystals.
We will use a Cartesian coordinate system fixed in space (A,B,C) and always view the data
by looking down on the AB-plane (Fig. 5). The net represents the hemisphere below this
plane with -1 < C < 0, We obtain the correct viewing plane by rotating the (x,y,z) system
relative to the (A,B,C) system while keeping one axis fixed.

Recall that the line segment from the origin chosen to represent a given crystal was
originally selected based on the requirement that z < 0 at the intersection with the unit
sphere. This more general capability requires that line segment selection depend on the
hemisphere being studied so that each crystal is represented. For the standard data pre-
sentation in the xy-plane, (A,B,C) = (xX,y,z). To view the data in the yz-plane we rotate
the coordinate system about the y-axis keeping y = B until A = -z and C = x (Fig. 5). The
hemisphere presented corresponds to x < 0. Then, setting (A,B,C) = (-z,y,x) and perform-
ing the sequence of coordinate transformations discussed above with (A,B,C) replacing
(x,y,2z), we obtain net coordinates (A,B) representing the yz-plane. Similarly, to view
the xz-plane we begin with the axes in the original position (A;B,C) = (x,y,z) and again
rotate the coordinate system, this time about the x-axis keeping x = A until B = -z and C
=y (Fig. 5). The hemisphere represented by the net corresponds to y < 0. Setting
(A,B,C) = (x,-2,y) and following through the coordinate transformations we obtain net
coordinates (A,B) that represent the xz-plane. In these alternate Schmidt nets the trace
of the best-fit plane, the pole point, and the linear orientation vector are represented

~

in the (A,B,C) coordinate system and are subject to the requirement x < 0 or y =< 0.

CONCLUSTIONS

A general method has been developed to quantify the planar and/or linear orientation
of uniaxial crystals in a sample, leading to an improved understanding of the structure of
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the material. The method is the basis of a relatively simple algorithm for computer
analysis of large volumes of data. We have emphasized the application of this tool for
understanding the structure of ice. The orthogonal least-squares measures of fit present-
ed allow quantitative comparisons between samples and between subsets of the data repre-
senting a sample. The capability to view the data and the analytical results on Schmidt
nets of different hemispheres provides additional information to improve interpretation by
minimizing the importance of net distortion and measurement accuracy limitations.
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