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ABSTRACT 
 

This project developed, implemented, and demonstrated spatially distributed snow modeling 
and monitoring procedures for estimating snowmelt inputs to the Sacramento and San Joaquin 
river basins, California. The Distributed Snow Process Model (DSPM) used a temperature index 
algorithm, SSARR_grid, for estimating liquid water arriving at the ground surface each hourly 
time step in each model cell with 2-km spatial resolution. DSPM used interpolated air temperature 
and precipitation fields, as well as initial snow conditions. Air temperature interpolation 
incorporated hourly ambient lapse rates based on observed air temperatures in an inverse-distance-
squared technique. Precipitation interpolation used an inverse-distance-squared method. We 
developed a linear function that specified the melt factor used by SSARR_grid in each cell 
depending on the accumulated temperature index. In this test, DSPM relied on maps of snow 
water equivalent (SWE) for initiation and validation. We estimated the spatial distribution of SWE 
by combining estimates of snow cover area (SCA) with interpolations of SWE based on snow 
sensor and course measurements. SCA retrieval algorithms used measurements from the NOAA 
Advanced Very High Resolution Radiometer (AVHRR) to estimate snow extent as fractional 
cover per pixel. SWE interpolations for this project used an algorithm similar to the temperature 
interpolation. The results showed that 1) SWE maps predicted by DSPM with no updating over 
periods up to several days have fair agreement with maps produced from AVHRR merged with 
ground measurements, 2) cloud cover conditions permit the construction of SWE maps from 
AVHRR and ground measurements with sufficient frequency to improve model results through 
updating, and 3) preliminary runs of HEC–HMS to route the snowmelt water capture the timing 
and magnitude of the flow using these spatially distributed inputs. 
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INTRODUCTION 
 

In the western United States, snowmelt contributes approximately 70–80 percent of total annual 
runoff. Temporal variability in snowfall at interannual scales can have dramatic impacts on land 
cover, agriculture, and human and nonhuman populations. Current forecasts of snow runoff 
volume and peak flows from montane watersheds in California and other areas throughout the 
western United States use spatially lumped statistical models that link indices of snow volume and 
melting rate to stream flow (e.g., Peck 1976). Experience shows that river flow forecasts have 
reasonable accuracy for any WY close to the mean of the historical record. While this family of 
methods for runoff forecasting makes use of data sets with several decades of observations, 
problems can arise when climatic conditions vary greatly from the historical mean. It appears that 
systematic trends in runoff timing over the last few decades may represent changes in the climate 
of California (Roos 1990, 1991; Pupacko 1993; Dettinger and Cayan 1995). Trends showing 
change also appear in the records of snow water equivalent (SWE), represented by less snow 
accumulation at low elevation, compared to rainfall, and more snow at high elevations (Johnson et 
al. 1997). These trends may have two consequences: 1) greater probability of rainfall in the winter 
during periods of large snow extent in areas below timberline, and 2) less snow cover in forests at 
the onset of spring melting. Both could lead to increases in the frequency and magnitude of peak 
flows (Kattelmann 1991).  

Public pressure to improve runoff forecasts, water management, and apportionment continues to 
increase, thus motivating development of improved techniques to monitor the Sierra Nevada snow 
cover and track its changes. The U.S. Army Engineer Research and Development Center–Remote 
Sensing/GIS Center (ERDC–RS/GISC) in collaboration with the U.S. Army Corps of Engineers 
Hydrologic Engineering Center (HEC) continues to develop improved methods to monitor and 
model snow cover and runoff displayed in a common spatial context (Ochs 1997). Spatial data and 
spatially distributed models have not yet seen wide use or acceptance in operational forecasts of 
snowmelt runoff, but as competition for water resources and requirements for precision water 
management and control increase, the potential of using spatial data for forecast guidance and 
assessment of basin condition has shown increasing promise.  

This paper describes the approach and first results of a continuing investigation on the use of 
spatially distributed modeling of snow to provide improved estimates of runoff during flood 
events in the Sierra Nevada, California. The tests described here implemented a spatially 
distributed snow model, using as simple an approach as feasible, to establish a baseline of 
performance against which future model developments could compare. One of the objectives of 
this work is to develop remote sensing as a tool for estimating snow properties to use for initiation, 
updating, and validation of the snow modeling approach. We chose as a case study for this paper 
the historic floods in California during the period December 1996 to January 1997.  
 
 
METHODS 
 

This study modeled snow properties using a simple, temperature-index approach, distributed 
across the watersheds of the Sacramento and San Joaquin Rivers. The test period ran from 14 
December 1996 to 31 January 1997, bracketing the flood that occurred from 26 December to 4 
January. The test used snow maps derived from satellite data and ground stations to specify initial 
snow conditions (14 December) and to compare with model predictions (23 December and 8 
January). During the modeling period air temperature and precipitation were the only information 
input to the snow model. The snow model results included liquid water arriving at the soil surface, 
which was then input to a gridded runoff routing model. This paper focuses on the snow model 
and its inputs. 



 
Study area 
The Sacramento and San Joaquin basins drain into the great central valley of California westward 
from the crest of the Sierra Nevada (Fig. 1). The region ranges in elevation from about 500 m to 
over 4400 m in the south to just over 2700 m in the north. Of the river basins contributing to the 
major drainages, 75 percent have controlled flows. Approximately 15 percent of the area consists 
of alpine terrain with little forest cover, with an additional 25 percent of subalpine zone with 
continuous to discontinuous forest. The rest consists of forest, open woodland, and grasslands. In 
an Albers equal area projection, we specified a regular grid with 2-km resolution and considered 
each grid cell an independent modeling domain for snow and runoff generation. Each grid cell in 
the modeling approach used here has as characterization the mean elevation and forest cover. 
 

 
Figure 1. Sacramento and San Joaquin River basins and sub-basins, California. 

 

100 kilometers 
 

area = 79,767 km2 
model cells = 21,376 
contributing basins = 29 
hourly temperature = 97 
hourly precipitation = 287 
daily snow sensors = 109 
monthly snow courses = 287 



Modeling the snow accumulation and ablation processes: DSPM 
The Distributed Snow Process Model (DSPM) consists of a computational framework for 

estimating the snow conditions in the large number of distributed cells that describe a watershed or 
watershed sub-basin (Daly et al. 1999). The DSPM uses the standard geographic grid proposed by 
the Corps of Engineers Hydrologic Engineering Center (HEC), which defines cells for carrying 
out one-dimensional calculations of snow condition and melt production. These cells have equal 
area throughout the coverage using the Albers equal-area map projection. Depending on the 
modeling requirements, the grid resolution can vary and range from regular squares 10 m on a side 
to 10 km, with a 2-km grid as default used in this study. The standard hydrologic grid has the 
advantages of equal area property of the projection, the universal support of the Albers equal-area 
projection by nearly all GIS software packages, the wide use of Albers projection for a number of 
national mapping products, and the ease of graphical display. The DSPM cycles through all cells 
comprising a sub-basin during each time step, managing the data flow into and out of the snow 
routine as well the attributes of each cell. Currently, the DSPM uses SSARR_grid, described 
below, to simulate the snow processes in each grid cell. The computational framework of the 
DSPM allows other snow process models to be used in place of, or in conjunction with, 
SSARR_grid. DSPM requires of any snow model the ability to exchange information on all state 
variables each time step for each cell. 

We developed SSARR_grid from the “Snow-Band” snowmelt computation, part of the 
Streamflow Synthesis and Reservoir Regulation (SSARR) model (e.g., Speers et al. 1979, Cassell 
and Pangburn 1991, Rockwood and Kuehl 1993). The routine estimates the liquid water available 
at the soil surface for a cell for one time step by applying a melt factor to a temperature index:  

 
Lfree = mf (Ta – Tbase) 

 
where Lfree represents the melt production and mf the melt factor, which can change in time and 
space. The energy available to melt snow has the index (Ta – Tbase) where Ta represents the air 
temperature at the model cell and Tbase, a base temperature below which the model will not allow 
melt. 

The time step is generally controlled by the frequency of input data available and may range in 
time up to 24 hours; we used one hour in this study. Interpolated precipitation and air temperature 
drive surface processes of accumulation and melting. Currently, the temperature index method 
predicts snow melting with either of two options to describe the melting rate: a function of an 
antecedent temperature index or a predetermined function of month of the year. We used the 
former. Heavy rain events trigger a separate melt rate coefficient, mfrain. At any point in time an 
antecedent temperature index describes the cold content of the snowpack, which accumulates 
during cold events. The model must “satisfy” the cold content before melt runoff can occur. A 
simple “bucket” concept provides the mechanism to retain liquid water in the snow against 
drainage processes until the water content reaches a user-set threshold.  

 
Calibration of DSPM 

In DSPM we chose to optimize the values in SSARR_grid of the base temperature Tbase, the 
temperature used to separate rain and snow events, the rain melt factor (mfrain), and the snowmelt 
factor mf. We developed a linear function to specify the snowmelt factor based on the accumulated 
temperature index. This effort used hourly temperature, SWE, and precipitation measurements 
during the winters 1985–1999 from 22 stations in the test region to calibrate the SSARR_grid 
parameters. The sum-of-squares difference between the SWE values calculated by SSARR_grid 
and the measured SWE was minimized using the downhill simplex method of Nelder and Mead 
(1965) as presented by Press et al. (1992). This method belongs to the class of multidimensional 
minimization procedures. The SSARR_grid used a one-hour time step during calibration.  

In the first effort to calibrate the parameters of SSARR_grid we found an optimized value of 
each of the tuned parameters for each winter period for each station. However, we found no 
discernable trend between either the elevation of the station or the location of the station and the 
value of the optimized parameters. We decided to pool the stations and all the years of data to 



produce one set of optimized results for the entire Sierra test region. This resulted in a base 
temperature of 32.65°F (.36°C), a temperature to separate rain and snow events of 34.97°F 
(1.65°C), rain melt factor of .1576, and melt factor that ranged from .0030 at an accumulated 
temperature index of zero to .2959 at an accumulated temperature index of 50. The melt factor was 
considered to be constant at higher values of the accumulated temperature index. Representative 
results for one location are shown in Figure 2. 
 

 
 

Figure 2. Calibration of the melt factor mf using an optimization technique with measurement from the Lake 
Success snow sensor station. Rising trace in top plot shows cumulative precipitation, while the two similar 
lines below show the measured and modeled SWE. The bottom plot shows the air temperature record during 
this calibration period. 

 
Model input data: Meteorology 

As summarized in Figure 1, the model test used air temperature measurements from 97 sensors 
that reported hourly, while precipitation included hourly measurements from 287 gages. The air 
temperature records have undergone quality control to flag anomalous values and fill gaps. The 
precipitation record experienced similar controls, except for adjustments to gage catch efficiency. 
Yang et al. (1998) assessed the undercatch of standard precipitation gages depending on wind 
speed and have shown that during windy periods unshielded gages and gages shielded with 
Wyoming wind screens often catch only a small fraction of the total snowfall. We ignored this 
effect for the model tests described here. 

We used elevation trends and an inverse-distance-squared algorithm to interpolate the air 
temperature measurements. At each hourly time step, a linear model fit to the air temperature 
measurements in and around a watershed as a function of the elevation of the measurement sites 
estimated the mean ambient lapse rate for the previous hour. We detrended the data for elevation 
by lapsing the measurements down to sea level. An inverse-distance-squared algorithm filled in 



the model cells between and around the measurement sites, and the data values then followed the 
trend line back up in elevation to reach the model input values at the elevation of each cell. 

An initial assessment of the precipitation data showed no strong trends in elevation over the 
whole range of elevation in the study area. Greater wind speeds with elevation and openness 
probably accounted for much of this lack of trend. Therefore for simplicity’s sake we used an 
inverse-distance-squared algorithm without any other trends. This approach caused the 
precipitation fields to have a strong “peak and pit” pattern common with this type of interpolation. 

 
Model input data: Initial and subsequent snow conditions 

For operational application we have developed methods to map SWE by merging interpolated 
measurements of snow water equivalent, SWE, with snow cover area, SCA, recovered from 
satellite measurements: 

 
SWEmodel cell, basin = SWEinterpolated × SCAsatellite 

 
where SWEmodel cell, basin represents the total volume of water equivalent on a model cell or basin, 
SWEinterpolated the preliminary value from spatial interpolation of ground data, and SCAsatellite the 
fractional cover of snow per pixel.  

The SWE interpolation used in this study employed methods similar to those used to interpolate 
air temperature. The elevation trend on a daily basis provided a pattern to the interpolated field in 
addition to the inverse-distance-squared trends. We used measurements from both snow sensors 
and snow courses. On a daily basis when we did not have snow course measurements, we modeled 
their values using the elevation trend line. The snow measurement sites have characteristics 
suitable for index modeling (i.e., more and earlier snow than nearby areas), so spatial fields 
interpolated from these data tend to overestimate the total SWE on a watershed. While the general 
trends of the interpolated SWE follow ground-based surveys, multiplication with subpixel SCA 
improves estimation of the total SWE by introducing the spatial patterns of bare area.  

We mapped fractional SCA (subpixel) using imagery from the Advanced Very High Resolution 
Radiometer (AVHRR), broadly following the concepts described by Rosenthal and Dozier (1996). 
This processing, which used three reflectance channels on the thermal band of channel 4, 
comprised five steps: 

 
1. First, we interactively georegistered the imagery using a variety of reference images 

including vector-based hydrography, digital elevation models, and previously registered images. 
The registration step also binned the output into 1.0-km pixels.  

2. After calibrations of the raw data and atmospheric correction of channels 1 and 2 using 6S 
(Vermote et al. 1997), the second step separated the reflectance component of Channel 3 (3.5–3.9 
µm) from the emittance component using the temperature from channel 4 and assumptions about 
the surface emissivity to make a new, synthesized channel 3B.  

3. As a third step, we interactively formed a cloud mask using a variety of threshold tests on 
individual bands and band combinations, then merged this mask with a water mask formed from 
the GIS hydrographic coverage. Occasionally, this step required manual image editing.  

4. In the fourth step, we reduced the image space for further analyses: the algorithm first masked 
areas with clouds and areas too warm to contain snow using a temperature set by the user. 
Rosenthal (1996) describes these calculations in more detail. Next the algorithm determined which 
pixels could contain snow using a binary decision tree. We trained the tree on 25,532 cases built 
from mixtures of theoretical reflectance spectra of snow (two-stream approximation to the 
radiative transfer equation) and non-snow spectra derived from spectral libraries convolved to 
AVHRR bandwidths. For channels 1 and 2 we used the spectral data on types of granite, soil, and 
vegetation compiled by Satterwhite and Henley (1990), while for the extracted channel 3B we 
used the spectral reflectances from Salisbury and D’Aria (1994). 

5. The pixels determined as likely to contain snow next ran down a regression tree to estimate 
the fractional cover of snow per pixel, SCA. We trained the regression tree against a set of 25,532 
cases of mixtures of 23 spectra including photometric shade (0,0,0). The independent data 



included channels 1, 2, and 3B and the ratios R3-1 (channel 3/(channel 3 + channel 1) and R3-2 
(channel 3/channel 3 + channel 2) based on results from Rosenthal and Dozier (1996) with 
Landsat TM. 

 
We have current tests in progress to quantitatively test the accuracy of the algorithm used in this 

study to recover SCA from AVHRR imagery relying on spectral unmixing of Landsat TM 
(Rosenthal 1996) and an extensive set of aerial photographs. Unpublished measurements from 
U.S. operations over Bosnia have shown accuracy of about ±6 percent. In the final step to produce 
the SWE maps, we multiplied SCA times the interpolated SWE, then averaged the result to cells 
with 2-km resolution. 

 
Snow runoff modeling and routing 

The Hydrologic Engineering Center’s Hydrologic Modeling System (HEC–HMS), the Corps’ 
“next-generation” software for precipitation runoff simulation, provides a variety of options for 
simulating precipitation runoff processes and includes its own graphical user interface, integrated 
hydrologic analysis components, data storage and management capabilities, and graphics and 
reporting facilities. We used the ModClark method, a linear distributed-runoff transformation that 
accepts gridded snowmelt or rainfall data (Peters and Easton 1996). DSPM estimated the 
snowmelt arriving at the soil surface in each cell, as described above. After calibration 
(Hydrologic Engineering Center 1990), HEC–HMS tracked liquid water uniquely for each cell of 
the study area for each time step. The ModClark method lagged and routed snowmelt runoff from 
each cell to the basin outlet through a series of linear reservoirs. The method summed the outflows 
from each linear reservoir and added baseflow to obtain the total snowmelt hydrograph in each 
basin. We used general trends of the discrepancies between observed and modeled hydrographs to 
make qualitative assessments of snow model performance. 

 
 

RESULTS 
 
Floods of 29 December 1996–4 January 1997 

A series of rainstorms 29 December 1996 through 4 January 1997 brought unusually warm and 
heavy precipitation to the northern region of the study area. Individual storm periods ranged from 
10- to 200-mm mean maximum 24-hour precipitation, while the mean of maximum accumulation 
across the sites for the other storm types outside the flooding period ranged from about 10 to 80 
mm. The rain caused widespread snowmelt from a preexisting above-normal snowpack. These 
conditions caused widespread minor-to-record-breaking floods from central California to Oregon, 
during which several gaging stations recorded the highest peaks in the history of their operation. 
Figure 3 shows the cumulative precipitation during the model test period. Despite obvious effects 
caused by the interpolation technique, the regional pattern of heavy precipitation over the northern 
Sierra dominates the overall pattern. 

 
Snow extent during test period 

Associated with the buildup of above-average snowpack prior to the onset of the series of rain 
storms came an increase in the area of the snowpack. After the floods, the satellite imagery 
showed a large drop in SCA, in turn associated with large volumes of snow melted by the 
meteorological events during the storms. Figure 4 shows composite scenes from AVHRR acquired 
on 14 December and 23 December 1996 and 8 January 1997. SCA from the 14 December scene 
defined the extent of model cells containing snow and its product with interpolated SWE the initial 
water equivalent in each cell. 
 
 

 



 
 

Figure 3. Total accumulated precipitation 14 December 1996 to 31 January 1997 
showing patterns from use of inverse-distance-squared interpolation technique. 

 
Model and estimated SWE during the test period 

The SWE predicted by DSPM shows systematic under-prediction with increasing time when 
compared to the measurements by the snow sensors in the contributing basins. We compared the 
modeled SWE in the 2- × 2-km cell with the closest centroid to each snow sensor on a daily basis. 
The mean of the differences and standard deviations across larger areas of the test region showed 
this trend. Figures 5–7 show the time series of mean error accumulation and the standard deviation 
for the Tulare River basin in the southern Sierra, the San Joaquin River basin in the central Sierra, 
and the Sacramento River basin in the northern Sierra. In these plots one can see a rise in error rate 
during storms, followed by a decrease. But the decrease does not take the mean error back to zero 
in most cases. The reduction in error following 2–3 days after storms happens when the new SWE 
has fully registered on the sensor. Because of gradual snow settlement, it typically takes hours to 
days before new snow presents a signal to the sensors. This increases with greater antecedent 
snow. 

Water control decision makers would have the most interest in the flooding period 26 December 
to 4 January. Thus the snow conditions just before the event and just after the event provide 
suitable evidence for assessing how this approach performed in an extreme event. We compared 
the SWE predicted by DSPM with the SWE maps derived from AVHRR and interpolated ground 
measurements on 23 December and 8 January, two dates for which we had relatively complete 



SCA maps. Figures 8 and 9 show the differences on a cell-by-cell basis between the SWE 
predicted by DSPM and the satellite-derived SWE product. The least differences occurred in the 
lower elevation where the snowpack has not reached great depths of SWE (SWE < 200 mm), but 
had reached great extent (see Fig. 3). The greatest differences, both positive and negative, on both 
dates occurred in the alpine and subalpine areas, particularly in the southern Sierra. In the context 
of this case study this distribution of error proved fortuitous, as we show in the next section. The 
areas with most error contributed the least runoff, in general, to the maximum observed 
streamflow. Figure 10 shows the runoff/precipitation ratio for the event, which backs up this 
statement. 

  
Figure 4. Composite scenes from AVHRR acquired on 14 December and 23 December 1996 and 8 January 
1997. Light gray background formed as gray shade image composite of AVHRR channels 3, 2, and 1. The 
maximum snow extent during the test period shows as the black masked area. Inside this area SCA shows as 
white (SCA = 100%) to dark gray (SCA has low fraction). Homogeneous dark gray areas represent cloud 
over the maximum area of snow cover (the mask). 

 
Model and observed runoff: Selected examples 

Detailed analysis of the performance of the snow model in relation to the observed and 
predicted hydrographs lies beyond the scope of this paper, but will appear in future articles. We 
present instead typical results from a basin hardest hit by flooding, the American River basin (see 
Fig. 1), and typical results from high-elevation basins in the alpine and subalpine zones of the 
Sierra. Figure 11 shows the output graphics from HEC–HMS for a stream gage on the American 
River, which demonstrates that the modeling system can achieve correct prediction of the timing 
of the peak flow and reasonable prediction of the magnitude of the peak flow. Figure 12 shows 
similar output graphics from a high elevation watershed that demonstrates the problems with 
combined error from incorrect precipitation and probable problems with how the model stored 



meltwater. Both the predicted total volume and flow timing show large discrepancies with the 
observed flow. 
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Figure 5. Plot of accumulating error with time of the SWE predicted by DSPM at sensor sites and the 
measurements reported by those sites. The mean of the differences between the model and measurements 
across the Tulare basin (southern Sierra) shows as the symbols in the center of the error bars. Error bars 
show the standard deviation of the mean differences. 
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Figure 6. Plot of accumulating error with time of the SWE predicted by DSPM at sensor sites and the 
measurements reported by those sites. The mean of the differences between the model and measurements 
across the San Joaquin basin (central Sierra) shows as the symbols in the center of the error bars. Error bars 
show the standard deviation of the mean differences. 
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Figure 7. Plot of accumulating error with time of the SWE predicted by DSPM at sensor sites and the 
measurements reported by those sites. The mean of the differences between the model and measurements 
across the Sacramento basin (northern Sierra) shows as the symbols in the center of the error bars. Error 
bars show the standard deviation of the mean differences. 

 

 
 

Figure 8. The difference between the SWE predicted by DSPM and 
the SWE estimated by merging AVHRR-derived SCA with 
interpolated ground measurements shown for 23 December 1996. 



  
Figure 9. The difference between the SWE predicted by DSPM 
and the SWE estimated by merging AVHRR-derived SCA with 
interpolated ground measurements shown for 8 January 1997. 

 

  
Figure 10. The ratio of precipitation input to runoff produced by 
the 1996–1997 flooding event. Compare area with low runoff 
production with 8 January AVHRR SCA map shown in Figure 4. 



 
 
Figure 11. Graphical output from HEC-HMS, a model that routes spatially distributed inputs to runoff. The 
upper graph shows snowmelt, precipitation, and combined inputs to this heavily flooded tributary of the 
American River. The lower plot shows the predicted and observed flows. The predictions overestimate the 
early peaks, while underestimating the main flow peak. 
 

 
 
Figure 12. Graphical output from HEC-HMS, a model that routes spatially distributed inputs to runoff. The 
upper graph shows snowmelt, precipitation, and combined inputs to this heavily flooded tributary of the 
American River. The lower plot shows the predicted and observed flows. The predictions show an earlier 
peak than observed and the predicted flow represents much less volume than observed. 



 
 
SUMMARY AND CONCLUSIONS 

 
This paper reports on a study that implemented a simple approach to modeling processes of 

snow hydrology with explicit spatial distribution. The model employed snow cover products 
derived from remote sensing, operational ground-based measurements of snow, air temperature 
and precipitation, and observed streamflow. The snow model DSPM used parameters that resulted 
from optimized calibration over many sites and for many storms. Air temperature measurements 
drove the snow model calculations after interpolation that expressed the elevation trends. A simple 
approach interpolated precipitation, which showed weaknesses in the results. The model predicts 
less SWE than observed and this systematic error increases over time. However, assimilation of 
the satellite SWE product could improve model performance even without changing the 
procedures. We conclude the following: 

 
• This spatially distributed approach to use a simple snow model over a large region captures 

the general trends in observed snow water equivalent and runoff over time periods up to several 
days.  

• In the context of this case study, the New Year’s floods of 1997, this modeling approach 
captured the snow depletion and runoff dynamics over the area that contributed most to maximum 
flows. These areas had relatively shallow snow and little ambiguity in precipitation type, rain or 
snow. 

• Much work remains to develop more appropriate techniques to adjust measurements of 
precipitation gages in the absence of wind speed measurements in the alpine and subalpine zones. 

• The SWE maps built from merging AVHRR-derived SCA and interpolated SWE provide 
suitable data for initiating and validating this type of modeling approach. We conclude by proxy 
that this product would improve the model performance through its use to update model state 
variables. 

• Comparison of modeled SWE with sensor-measured SWE shows that DSPM underpredicted 
SWE systematically, thus reflecting problems in our interpolation of precipitation and probably 
how the model handles water storage in deep packs. 
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