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Scaling Associated with Averaging and Resampling 
of LiDAR-derived Montane Snow Depth Data 

S.R. FASSNACHT,1 AND J.S. DEEMS2 

ABSTRACT: 

Airborne Light Detection And Ranging (LiDAR) measurements from three montane NASA 
Cold Lands Processes Experiment study sites were used to examine the spatial scaling properties 
of snow depth over an 1100 by 1100 m area. The resolution of raw snow depth measurements 
were rescaled from a nominal horizontal resolution of approximately 1.5 metres to 3, 5, 10, 20, 
and 30 metres using averaging (AVG) and resampled with a uniform random stratified sampling 
(RSS) scheme. Log-log semi-variograms with 50 log-width bins were created for both of the 
different subsetting methods, resampling and averaging. From the raw data, a scale break, a 
transition from a structured to nearly spatially random system, was observed in each of the log-log 
variograms. For each site, the scale break was still detectable slightly greater than the resampling 
resolution for the RSS scheme, but approximately twice the subsetting resolution for the AVG 
scheme. The resolution required to still identify the scale break was from 5 to 10 metres, 
depending upon the location and sampling method.  Other scaling and spatial structure features 
were also examined for their behaviour after rescaling, such as variogram power-law slope, overall 
variance, and the minimum resolvable lag distance. These properties changed with the resolution 
in manners consistent with other geostatistical studies. 
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INTRODUCTION 

Knowledge of the spatial distribution of snow is important for assessing and forecasting 
snowmelt rates and runoff (Elder et al., 1991) and avalanche hazards (Birkeland et al., 1995), to 
initialize large-scale weather and climate models (Liston, 1999; Groisman and Davies, 2001), to 
understand climate feedbacks (Brown, 2000), to study variability in atmospheric circulation 
(Derksen and LeDrew, 2000), and for investigating ecologic dynamics and biogeochemical 
cycling (Jones, 1999). The spacing between measurement points and the resolution of remotely 
sensed imagery, as well as the size represented by the sampling or the support (for point data) are 
of great interest. This helps provide an understanding of the distance over which the variability is 
explainable. In a linear plot of semi-variance versus distance between data pairs, i.e., a variogram, 
the scale of variability is called the correlation length. This is defined as the distance between 
sampling points over which snow data are still correlated (e.g., Ling et al., 1995), and is usually 
equivalent to the range. The value of the semi-variance at the correlation length is called the sill. 
For smaller scale snow depth (ds) measurements, this correlation length varies from less than 20 m 
for a montane setting (Erxleben et al., 2002) to 30 to 80 m for a prairie setting (Shook and Gray, 
1996). Using large basin scale snow water equivalent (SWE) measurements, the correlation length 
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varies as a function of the dataset, topography and climate; Ling et al. (1995) used snowcourse 
data in the Upper Colorado River basins to estimate the correlation length from 38 to 116 km, 
Carroll et al. (1999) combined various datasets to estimate a correlation length approaching 500 
km, and approaching peak accumulation, the correlation length of 300 km was shorter for the 
snow telemetry snow pillow data than the 400 to 500 km distance for snowcourse data (Dressler et 
al., in review).  

From high resolution data, log-log variograms have shown that there is a break in slope in the 
variogram, separating scale regions that can be described by a power law, such as illustrated from 
30-m elevation data by Mark and Aronson (1984). This ‘scale break’ is analogous to the 
correlation length. In addition to identifying a scale where driving processes change behavior, the 
scale break separates distance ranges where the scaling properties of the spatial data are different 
(Deems et al., in press). Where these power law correlations exist (i.e. straight lines in log-log 
space), their slope (power; b) can be used to estimate the fractal dimension (D) of that scale 
region. The feature in question will have a fractal dimension greater than its Euclidean dimension, 
that is, a linear feature will have a fractal dimension between 1 and 2, while a surface will have a 
D value between 2 and 3. The fractal dimension is an index of the roughness of the surface and the 
relative dominance of short-range and long-range variability.  

For transects of snow depth data, Shook and Gray (1996) assumed that beyond the scale break, 
which they called the cutoff length, the correlations were random as b approached zero. Using 
high resolution airborne light detection and ranging (LiDAR) laser altimetry estimates of snow 
depth, Deems et al. (in press) found that beyond a site-dependent scale break of 15 to 40 m, the 
data approached randomness, but were not completely random, with D values of 2.91 to 2.97. 
Blöschl (1999) presented four scale windows of snow covered area data that illustrated scale 
breaks occurred at 10–3 and 102 metres with D being continuous, and not approaching random, 
between the three scale windows that overlapped. The exception was thin section crystal imagery 
that became random at lag distances greater than 10–3 m. 

The scale of measurement influences the characteristics of the variogram (Beven, 1989). 
Specifically, while the overall shape tends to remain constant at lag distances equal to and greater 
than the minimum sampling distance, the semi-variance decreases as the resolution increases 
(Matheron, 1967; Journel and Huijbregts, 1978; Beven, 1989). Using a square grid system with 
snow depth data, Woo and Giesbrecht (2000) illustrated that the loss of information, given as a 
decrease in variance and skewness of a distribution, was a function of the coarsening of the 
resolution and the variability of the original data. The sampling distance relates to both the spacing 
(or resolution), which Blöschl and Sivapalan (1995) define as the spacing between samples, and 
the support (also called the grain) which represents the integrated width, area or volume of the 
sample (Blöschl and Sivapalan, 1995). The extent is the coverage of the data (Blöschl and 
Sivapalan, 1995) and defines the limit of the variogram. For remote sensing data, the support is 
often equal to the spacing. However, for manual measurements, the support can be as small as a 
few centimeters or less, while the spacing is in the order of meters. For example, Molotch et al. 
(2005) used snow depth data sampled at a spacing of 240 m and a support of 5 m (each point was 
based on the averaging of three measurements taken 5 m apart, of individual support of 
approximately 2 cm). 

To optimize physical sampling or the size of remotely sensed imagery, it is desired to maximize 
the sampling resolution while maintaining the structure of the variogram over the appropriate scale 
range. The location of the scale break in the log-log variogram informs the scale range necessary 
for accurate sample scaling (Deems et al., in press). To identify this maximum sampling 
resolution, higher resolution data can be rescaled or resampled. The high spatial resolution of 
LiDAR data affords the opportunity to examine the influence of sampling intervals on the spatial 
relationships among the data. The raw 1.5 m resolution data were rescaled (averaged) and 
resampled (randomly selected within a grid cell) to coarser resolutions of 3, 5, 10, 20, 30 meters. 
Using the rescaled data, the following questions were addressed: i) how does the minimum 
resolvable lag distance of the log-log variograms change, i.e., the minimum lag distance at which 
the variogram displayed a power law relationship?, ii) how does the slope of power law regions 
vary?, iii) how does the magnitude of the semivariance change, and iv) does the location of the 
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scale break, i.e., the break in slope of the variogram, change? The focus of this paper is scaling 
and, while the LiDAR data provide snowpack surface estimates in two-plus dimensions, omni-
directional variograms will be used to illustrate scaling issues.  

STUDY AREA 

Data from the 2003 NASA Cold Land Processes Experiment (CLPX) in Colorado were used in 
this study. Three of the nine CLPX 1-km2 Intensive Study Areas sites (Figure 1) were chosen: 
Buffalo Pass (RB), Walton Creek (RW), and Alpine (FA). These sites have complete or near 
complete snowcover throughout the winter and are not completely forested. The Buffalo Pass site 
is characterized by dense coniferous forest interspersed with open meadows, low rolling 
topography, and deep snowpacks. The Walton Creek site provides a broad meadow environment, 
interspersed with small, dense stands of coniferous forest, low rolling topography, and deep 
snowpacks. The Alpine study site contains alpine tundra, with some subalpine coniferous forest, 
and is generally north-facing with moderate relief. Buffalo Pass and Walton Creek are in a similar 
synoptic-scale terrain position, receiving high annual snowfall, while the Alpine site receives 
lower annual precipitation totals and has greater wind exposure above treeline. A full description 
of the study sites is given in Cline et al. (2003). 

 
Figure 1: Location map. 

 

 



166 

Table 1. Summary of LiDAR snow depth data. 

X (UTM East - m) Y (UTM North - m) snow depth data (m) study site 
maximum minimum maximum minimum maximum minimum average # of points

Alpine 426953 425853 4411890 4410790 9.98 0 1.24 414956
Buffalo Pass 358126 357026 4488940 4487840 6.09 0 3.13 361337
Walton Creek 360695 359595 4474130 4473030 4.17 0 1.95 423259

METHODOLOGY 

The data, at a 0.15-m vertical resolution, were derived from aerial LiDAR sampling for a 1100 
by 1100-m area covering each of the three CLPX study sites. The snow surface elevation data 
were collected on 8–9 April 2003, while the terrain elevation data were collected on 18–19 
September 2003. The elevation data were interpolated to a 1-m grid, and then subtracted from the 
point snow surface elevations to yield a snow depth dataset with an approximate horizontal 
resolution of 1.5 m (Deems et al., in press). 

New datasets at 3, 5, 10, 20, 30-m resolutions were generated by two methods: i) averaging the 
all data points within the new resolution (AVG) and ii) selecting a random data point within each 
element of a grid at the new resolution (RSS). The RSS method chose a random x and y position 
within each grid element using a uniform distribution, excluding a 5-cm border around each cell. 
Semi-variograms were estimated for each dataset using 50 log-width bins up to a maximum 
distance of 1100 m. Eleven hundred meters is the longest non-diagonal distance between data 
pairs, and corresponds to the use of a circular domain by Mark and Aronson (1984) to avoid the 
influence of corners. The log-width bins provide equal-width bins in log-log space, allow a more 
precise power law fit, and offer increased bin resolution at short lag distances (e.g., Mark and 
Aronson, 1984; Deems et al., in press).  

The semi-variograms for the different resolution datasets were compared at each site. The slope 
representation was determined from a visual comparison of the individual subset variance (γSUBSET) 
versus the raw data variance (γRAW). For each bin width, a ratio (γS:R) was computed of γSUBSET to 
γRAW. If the γS:R ratio was constant as the lag distance increased, then the slope of the individual 
γSUBSET was considered to be consistent with γRAW. If the slope was consistent, the resolvable lag 
distance was estimated as the lag distance lagi–1 where γS:R(lagi–1) was within 5% of the γS:R(lagi) at 
the next larger lag distance lagi. The magnitude of the variance was computed as the average γS:R 
from the resolvable lag distance to the largest lag distance (1100 m). 

RESULTS 

The magnitude of the variances for the AVG datasets (Figures 2ai, 2bi, and 2ci) decreases as the 
resolution increases while they remain relatively constant for the RSS set (Figures 2aii, 2bii, and 
2cii). The minimum resolution at which the variograms are resolvable is related to the resolution 
of each dataset, but differs with the resampling method used. The variogram slopes remain 
essentially constant for lag distances greater than the resolution of the dataset. The RSS data show 
greater variability than the AVG data at shorter lag distances. Both resampling methods preserve 
the location of the scale break until the dataset resolution approaches the magnitude scale break 
distance.  

The minimum lag distance at which the variogram is still resolvable is a function of both the 
sampling resolution and the subsetting method (Figure 3). At all sampling resolutions and 
locations, the minimum resolvable distance is at least as large as the data resolution, but is usually 
greater for the AVG method than the RSS method. In fact, for the AVG method, the minimum 
resolvable distances approach twice the sampling resolution, especially as the resolution increases 
for the Walton Creek (on average 1.7 times) and Alpine (on average 2.1 times) sites. For Buffalo 
Pass, the minimum resolvable distance approaches 1.5 times the sampling resolution.  
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Figure 2: Variograms for the three field sites a) Buffalo Pass, b) Walton Creek, and c) Alpine and for the two 
data subsetting methods i) averaging, and ii) random stratified sampling. 
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For the RSS method, the minimum resolvable distance is on average 1.2 times the sampling 
resolution for all sites. 

The slopes of the two scale regions in each variogram remain essentially constant through the 
rescaling process, regardless of the rescaling method used. The major difference is in the RSS 
datasets, where the variances at lag distances shorter than the nominal resolution are significantly 
inflated, and thus the slope is strongly distorted or the power-law relationship is lost. However, for 
distances greater than the nominal resolution, the variogram slope matches that of the raw data. 

The scale breaks for Walton Creek, Buffalo Pass, and Alpine are 15, 16.5 and 40 m, 
respectively. The scale break locations in each variogram are represented increasingly poorly as 
the dataset resolution is coarsened. As the data are resampled or averaged to resolutions close to 
the scale break distance, the variogram slopes at shorter lags are increasingly distorted, and thus it 
becomes difficult to locate the scale break precisely, even if there is a data point in the right 
location. This effect is especially pronounced for the RSS datasets.  

By dividing the average subset variance by the raw variance for lag distances equal to and 
greater than the minimum resolvable distance, the relative magnitude of the subset variance was 
computed as a function of the sample spacing (Figure 4). For the AVG method, the average γS:R 
ratio decreases as the sampling resolution increases, reaching 0.3 for Buffalo Pass and Walton 
Creek, and 0.66 for Alpine. This ratio is 0.97 for Alpine and 1.1 for Buffalo Pass and Walton 
Creek using the RSS data subsetting method, and is relatively constant at a 5-m sample resolution 
and greater (Figure 4). 

1:2 line
1:1 line

 
Figure 3: Minimum resolvable distance for each variogram subset as a function of the sample spacing. 

DISCUSSION 

It is known for different types of spatial correlation structure that averaging leads to decreasing 
of the variance as the data resolution increases, while resampled datasets remain the variance 
consistent with the original data, and both averaging and resampling retain the shape of the 
original variogram but don’t preserve the correlation length, i.e., the scale break (e.g., Matheron, 
1967; Journel and Huijbregts, 1978). The results appear to fit.  
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Figure 4: Relative magnitude of the subset variance defined as the average ratio of individual subset variance 

to the raw data variance for each variogram subset as a function of the sample spacing. 

Rescaling the data by averaging does not produce any data points at spacings less than the 
resolution, since the average values are assigned to the center of grid cells at the new spacing. 
Therefore the AVG subsets appear to fit the raw variograms better than the RSS subsets. Since the 
RSS datasets are resampled by randomly selecting a point within a grid of the new resolution, 
some points are near the edge of the grid cells, and data pairs exist at all lag distances. The number 
of data pairs in each bin decreases dramatically below the nominal resolution of the dataset. This 
causes the variogram to be unstable at those sub-resolution lag distances. Russo and Jury (1987) 
stated that this occurs due to sampling errors, especially when there were only a small number of 
data pairs for the shorter lag distances. This was true for the coarser resampling resolutions used in 
this paper. 

Identification of the minimum resolvable resolution differs depending on the resampling method 
used. Variograms of the AVG datasets shift toward longer lag distances as the data are coarsened. 
Therefore the minimum resolvable distance, as measured by the γS:R parameter, diverges from the 
dataset resolution and rapidly approaches twice the resolution for the Alpine and Walton Creek 
datasets. For the RSS data, however, since pairs exist at all distances, the minimum resolvable 
distance is that at which the slopes of the resampled and raw variograms converge. The variogram 
slopes begin to converge at a distance where the bin contains at least 30 data pairs. This distance 
should be essentially equal to the sampling resolution due to the nature of the random sampling. 
These results indicate that the RSS method, or a similar method that preserves some of the spatial 
scatter present in the original point dataset, is preferred to methods that smooth and regularize the 
spatial distribution of the data. 

The slopes of both linear segments in each log-log variogram appear to be well-preserved by 
both resampling methods, over scale ranges governed by the minimum resolvable lag distance. 
This indicates that the spatial structure present in the data is relatively insensitive to the choice of 
resampling method. The difference between methods, however is in the overall amount of 
variability preserved. The AVG method serves to reduce the absolute magnitude of the variance, 
while the distributions generated by the RSS method show the same variance magnitude. The 
AVG method therefore serves to eliminate extreme values preserve spatial structure, while the 
RSS method preserves both spatial structure and the natural variability in the data values. The 



170 

extreme values, such as areas scoured clean of snow and deep drifts that persist into late summer, 
are commonly of great hydrologic and biologic importance to snow-dominated ecosystems. In this 
context, the RSS method appears to be preferred. 

Kuchment and Gelfan (2001) used various snow depth datasets from across Asia and one from 
Alaska and found that the magnitude of the variance differed from location to location. the point 
data themselves had a support in the order of centimeters, but these data were averaged in some 
cases, thus increasing the support to the spacing of the data. The data used to generate the 
variograms had a spacing of 20 to 100 m. At longer distances, the characteristics of the variogram 
were very similar to Deems et al. (in press). However, there were no data pairs at lag distances 
less than the scale break identified at the Buffalo pass and Walton Creek sites presented in this 
paper. It is uncertain how Kuchment and Gelfan (2001) derived the semi-variance at a 10-m lag 
distance; if these are at the centre of the 0 to 20 m bin, then they represent the data points that are 
20 m apart (for Tien-Shan, Valday, Don Rivere and lower Volga). The semi-variances presented 
in the paper are plotted against the maximum distance of the bin (Figure 2). Therefore, log bin 
widths should be used to provide equal bin widths in log-log space, and the location of the lag 
distance within interval of the bin width must be explicitly stated. 

The AVG snow depth variograms presented here also approach the origin (i.e. zero nugget 
effect) when plotted in linear space, as per Beven (1989). The decrease in the variance as the 
sampling resolution increases for the averaging method should be considered if the magnitude of 
the actual snow depth variance is required.  

The variograms from the raw LiDAR snow depth data, at a 1.5 m horizontal resolution, 
approximately match variograms from point snow depth measurements at the similar sites and the 
scale break at less than 20 m presented by (Erxleben et al., 2002). 

Hopkinson et al. (2001) showed that LiDAR measurements could be used to estimate snow 
depth for several transects. Since the LiDAR data used in this paper covered 2-D spatial domains, 
i.e., a 1 km2 area, they should be compared to the collocated point snow depth measurements to 
examine their accuracy. 

The scale break distances (15, 16.5 and 40 m for Walton Creek, Buffalo Pass, and Alpine in 
Figure 2) were easily observed in the 3, 5 and 10 m rescaled datasets, regardless of resampling 
method. If knowledge of the scale break location is needed for analysis, these rescaling results 
suggest that the sampling resolution is limited to resolutions close to half the scale break distance, 
such as 8 m for Buffalo Pass and Walton Creek and 20 m for Alpine. The differences in the scale 
break between sites are due primarily to variations in the vegetation, in particular half of the 
Alpine area has only small shrubs while the other two areas are dotted with coniferous trees, and 
to a lesser extent topography. Similarly, differences in the magnitude of the semi-variance are a 
function of the complexity of the vegetation and topography. Deems et al. (in press) suggest that 
knowledge of the relationship between the topographic characteristics of the study sites and scale 
break would be useful to generalize the factors that control the location of the scale break. Shook 
and Gray (1996) also found longer scale breaks for higher-relief areas.  

Omni-directional variograms have been used to illustrate scaling effects in this paper. Since the 
LiDAR data provide two-plus dimensional snowpack surface estimates, anisotropy related to 
scaling could be investigated. For scale breaks and fractal dimensions associated with the raw 
LiDAR data, as well as for directional analysis, the reader is referred to Deems et al. (in press). 

From these results, two issues appear critical for rescaling of point data. First, the choice of 
resolution must be consistent with the scale of spatial structure required. A resolution that is too 
fine will be inefficient, but a too-coarse resolution will not preserve the spatial structure (shown in 
the variograms) that adequately describes the patterns observed on the ground. Second, the chosen 
resampling method will affect the amount of variability preserved during the rescaling process. 
The AVG method shown here serves to reduce the overall level of variability in the datasets, 
resulting in subsets with adequate spatial structure, but fewer extreme values. The averaging 
method corresponds to using remote sensing data, as the support is equal to the spacing.  

Additionally, these results have implications for the resolution required for remotely-sensed or 
field-sampled data to represent snowpack variability at different scales. The scale break in the 
snow depth variogram indicates a change in process dynamics that control the spatial distribution 
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of snow (Deems et al., in press). Therefore, if the project goals require knowledge of spatial 
patterns over scales smaller than the scale break distance, the sampling or sensing resolution must 
be at most half the scale break distance to ensure that the small-scale spatial structure is adequately 
represented. Conversely, if larger-scale (50–1000 m) spatial structure is of interest, conventional 
remote-sensing resolutions of 30–100 m appear sufficient. 

CONCLUSIONS  

Efficient collection of spatial data mandates data gathering at the largest feasible resolution, 
whether the data are field sampled or remotely-sensed. Log-log variograms contain information on 
the spatial structure and the scaling behaviour of spatial data. Therefore the characteristics of the 
variogram provide metrics for assessing the ability of rescaled data to represent the spatial 
structure present in the original dataset. This study investigated the effects of two rescaling 
methods on spatial structure, as represented by the characteristics of log-log variograms. The 
variogram characteristics of interest were the minimum resolvable lag distance, the slope, the 
magnitude of the variance, and the scale break distance. One and a half meter resolution, LiDAR-
derived snow depth data were rescaled by averaging and by stratified random sampling to produce 
datasets of various resolutions. 

Rescaling the data using averaging reduces the variances as the data become closer to the mean 
by increasing the number of data points averaged. Both rescaling methods preserve the spatial 
structure of the original dataset. However, the AVG method smooths the data, effectively 
removing hydrologically important extreme values, and represents scaling features of the 
variogram increasingly poorly as the resolution is coarsened. The RSS method, conversely, 
maintains the overall range of variability, retains more small-scale structure, and preserves the 
location of the scale break.  

At the appropriate lag distances, the shape of the variogram was the same; for the averaging 
method, the magnitude of the variance consistently decreased as the rescaling resolution increased. 
The variance decreased at the same rate for the Buffalo Pass and Walton Creek sites, but at 
approximately one-half the rate for Alpine. Since the RSS method retained the shape of the 
variogram at shorter lag distances than the AVG method and more closely retained the magnitude 
of the variograms, random sampling with a smaller support is preferred over averaging with 
coarser resolutions. 
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