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Estimating the Snow Water Equivalent on the Gatineau 
Catchment Using Hierarchical Bayesian Modelling 
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ABSTRACT:  

One of the most important parameters for spring runoff forecasting is the snow water equivalent 
on the watershed, often estimated by kriging using in situ measurements, and in some cases by 
remote sensing. It is known that kriging techniques provide little information on uncertainty, aside 
from the kriging variance. In this paper, two approaches using Bayesian hierarchical modeling are 
compared with ordinary kriging; Bayesian hierarchical modeling is a flexible and general 
statistical approach which uses observations and prior knowledge to make inferences on both 
unobserved data (snow water equivalent on the watershed where there is no measurements) and on 
the parameters (influence of the covariables, spatial interactions between the values of the process 
at various sites). The first approach models snow water-equivalent as a gaussian spatial process 
(GRP) for which the mean varies in space, while the other uses the theory of Markov Random 
Fields (MRF). While kriging and the Bayesian models give similar point estimates, the latter 
provide more information on the distribution of the snow water-equivalent. Furthermore, kriging 
may considerably underestimate interpolation error.  

Keywords: Bayesian spatial models, Kriging, Snow water equivalent, Gaussian Random Process, 
Markov Random Fields, Bayesian hierarchical modeling. 

INTRODUCTION 

In Nordic regions, the snow-melt period is particularly critical for hydroelectric production. It is 
thus essential for dam operators to obtain the best possible forecasts based on future 
meteorological conditions and current state of the catchment. These forecasts will help them 
maximize water usage while maintaining a minimum failure probability. An essential variable to 
evaluate during this period is the snow water equivalent (SWE). Hydrologic models used for 
forecasting require either SWE on a grid representing the spatial distribution (distributed models), 
or an average of this same variable for the catchment (lumped models). Kriging is a very popular 
method of spatial interpolation [e.g., Journel, 1978] that can be used to obtain an estimation of 
snow water equivalent at points where there is no measure. Co-kriging and kriging with external 
drift allow the use of additional information originating from secondary variables, and has been 
applied to SWE interpolation [e.g. Tapsoba et al., 2005]. Nevertheless, this classical geostatistical 
framework cannot take into account the uncertainties associated to the primary, secondary 
variables and to the link between these variables. This can be done in the Bayesian framework. 
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The main difference between Bayesian inference and classical statistical inference is the 
interpretation of probability. In classical statistics, probability distributions represent the random 
character of the realizations of the studied process and the parameters of the distribution are 
considered as unknown constants. Only quantities which can be observed repeatedly are 
considered random and represented by probability distributions. In Bayesian models, all uncertain 
variables are represented by probability distributions, including parameters and unobserved 
quantities, such as missing values and future observations. Prior knowledge on the parameters 
values (θ ) is modeled by a prior probability distribution P(θ ) which is then combined using 
Bayes Theorem with a family of models explaining the data ( ( | )P θy ), to give a final measure 
of uncertainty on θ  given the data ( ( | )P θ y ), which is of course still a probability distribution. 
A more technical explanation of the basis of this approach will be given to the next section. 
Bayesian approaches have been used in geostatistics for 15 years [e.g., Christakos, 1990; Zhu and 
Journel, 1992]. More recently, the improvements in computing power allowed envisioning the 
application of Bayesian hierarchical methods for spatial interpolation. 

The objective of this study is to investigate the application of Bayesian hierarchical models to 
the interpolation of field measurements of SWE. These measurements are often very scarce, 
mainly because of budget and staff limitations, a single observation being typically an average of 
ten manual measurements on a transect of several hundred meters in an open forest at a site chosen 
because of its representativeness more than its accessibility in wintertime. Consequently, there 
may be considerable uncertainty about the exact quantity of snow on the catchment at the 
beginning of the melt period. Bayesian models allow to compare the impacts of imperfect 
knowledge of the SWE on the catchment to other major sources of uncertainty such as weather 
forecasts. The paper will focus on quantifying the uncertainty on the average SWE on a given 
catchment associated to a given snow water equivalent measurement network.  

The rest of the paper is divided in five parts. The first one is devoted to the foundations of 
Bayesian modelling. In the second part, three spatial prediction models that will be used in the 
application are presented: Gaussian Random Processes (GRP), Gaussian Markov Random Fields 
(MRF) and ordinary kriging. In the third part, the application site is described, then ordinary 
kriging, MRF and GRP are applied to the estimation of the snow water equivalent of the Gatineau 
catchment located in southern Quebec, Canada. The results are discussed in the fifth part and a 
conclusion is finally presented.  

1. BAYESIAN MODELLING  

1.1 The Bayesian framework 
The goal of statistical inference is to use the available data to make conclusions about 

unobserved quantities (process parameters, unobservable data). In Bayesian inference, these 
conclusions are summarized by conditional probability densities. The Bayes theorem states that: 

 

∫
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where: 

• θ  is the parameter vector; 
• y is the observed data; 
• ( | )P θ y  is the conditional probability of the parameters θ  given observed data, 

referred to as the posterior distribution; 
• ( | )P y θ  is the stochastic process that models the data for known parameter values θ , 

also referred to as the likelihood of the parameters given the data. The analyst can 
incorporate here the available physical knowledge on the studied phenomenon; 

• ( )P θ  is the prior probability distribution of the parameters. 
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The prior probability distribution ( )P θ  should represent all information available on the 
parameters prior to observing y. To avoid having to specify prior probabilities over a complete 
probability space, it is usually assumed that P(θ ) belongs to a parametric family of distributions 
P(θ |λ), where λ are called hyperparameters. Hyperparameters specification is the most 
controversial part of Bayesian modeling since different decisions may be taken at this step to set 
the value of the hyperparameters. One can either (1) consult an expert in the field to elicit values 
for the hyperparameters – this is the subjective Bayesian approach, (2) use some of the observed 
data to obtain realistic values for the hyperparameters – this is the empirical Bayesian 
methodology, (3) set arbitrary values for the hyperparameters and perform a sensitivity analysis, 
(4) in the absence of prior knowledge, use probability distributions with very large variance and 
which are locally uniform with respect to the likelihood function – this is the noninformative 
Bayesian methodology, or (5) represent the high level of uncertainty on the hyperparameters by 
yet another probability distribution P(λ) having a large variance – this is the hierarchical Bayesian 
methodology, which we will use in this paper. Experience with various models have shown that 
the posterior distribution ( | )P θ y  will not be overly sensitive to P(λ), if it has a large variance 
[Berger, 1985]. Hence, using a uniform distribution to model uncertainty on the hyperparameters 
λ is usually sufficient. 

The Bayes theorem is often presented in its non normalized form [2] where the symbol ∝  
means is proportional to:  

( | ) ( ) ( | )P P P∝θ y θ y θ  [2] 

From the posterior distribution ( | )P θ y  and the likelihood function ( | )P y θ , one can then 
derive the predictive distribution of non observed quantities y~  conditional on the data y, by 
integrating out the unknown parameters using total probability law: 

( | ) ( | ) ( | )P P P d= ∫y y y θ θ y θ% %  [3] 

A clear advantage of the Bayesian framework is its ability to efficiently take into account 
uncertain, heterogeneous or missing data. Interesting applications can be found in various fields 
such as meteorology [Berliner et al., 1998,2000; Handcocks and Wallis, 1994; Hugues and 
Guttorp, 1994; Wikle et al., 2001, 2002], hydrology [Lu and Berliner, 1999], environment and 
epidemiology [Suess et al., 2002] as well as in medical experimentation [Davis and Seaman, 
2002]. 

Complex models generally have a hierarchical structure, i.e. they are constituted of n successive 
levels, each being conditional to the parameters of the following ones. The parameters vector is 
therefore 1 2 3[ , , ,..., ]nθ θ θ θ=θ  where iθ  is the parameter vector at the level i. The probability 
of θ  can thus be written: 

1 2 3 1 2 3 2 3 1( ) ( , , ,..., ) ( | , ,..., ) ( | ,..., )... ( | ,..., ) ( )n n n i i n nP P P P P Pθ θ θ θ θ θ θ θ θ θ θ θ θ θ θ+= =θ  [4] 

In this case the joint probability density of all the parameters is obtained by multiplying the n 
densities of conditional probabilities corresponding to the n levels. The hierarchical structure is 
not absolutely necessary, but it greatly simplifies the construction of the model since each level is 
devoted to a particular aspect of the phenomenon (for example its spatial and temporal structures) 
that can generally be modeled with common statistical distributions (e.g. binomial, normal, Poison 
or exponential distributions). 

The next modelling step consists in specifying for every level the conditional distribution of the 
parameter given 1 2, ,...,i i nθ θ θ+ + . The first level generally is devoted to the measurement errors 
and the last level to the hyperparameters. 

1.2. Prior distribution updating using Monte Carlo Markov Chain (MCMC) 
To make inferences on every parameter of interest, it will be necessary to integrate ( | )P θ y  

with respect to all the others parameters. Except in very simple cases where the solution is 
analytical, this integration is done using Monte Carlo Markov Chain (MCMC) techniques such as 
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the Gibbs sampler [Geman and Geman, 1984], or the more general Metropolis-Hasting algorithm 
[Metropolis et al., 1953; Hasting, 1970]. The goal of the Metropolis-Hasting algorithm is to 
construct a Markov chain for which the equilibrium distribution is the posterior defined in [2]. The 
generic Metropolis-Hasting algorithm can be written as follows: 

(i) Start with some initial parameter value 0θ  and set i to 0,  
(ii) Given the parameter vector iθ , draw a candidate value 1iθ +  from some proposal distribution 
(iii) Compute the ratio R of the posterior density at the candidate and initial points, 

1( | ) / ( | )i iR P Pθ θ+= x x  
(iv) With probability min( ,1)R , accept the candidate parameter vector , else set 1i iθ θ+ = . 
(i) Set i = i + 1 and return to step (ii) 

Many versions of this algorithm have been proposed depending on the proposal distribution and 
the order in which the parameters are updated.  

1.3. Convergence issues 
Although it is mathematically proven that the distribution of the MCMC chains converges 

towards a stationary distribution, there is no criterion to formally decide if a chain has converged 
or not. The convergence speed depends on the parameterization of the problem. Several 
convergence tests have been developed by researchers, but none of them is able to assess 
convergence with certainty. The Geweke [1992] test was chosen to assess the convergence of the 
MCMC chain because of its ease of interpretation. It is based on a test of equality of the means of 
the first part and the last part of a Markov chain. More details on MCMC algorithms convergence 
are presented in El Adlouni et al. [2005]. 

2. THE SPATIAL PREDICTION MODELS 

Three methods that can all be used to model Gaussian spatial processes are compared. The first 
two are Bayesian models with similar properties (especially in cases where the spatial 
configuration is on a fixed grid) : a Gaussian random process and a Gaussian Markov Random 
Fields model. The third is the well known ordinary kriging with a trend model. 

2.1. The Gaussian Random Process (GRP) 
A spatial process )(sy  is a GRP if )(sy  has a normal distribution with average )(sµ  and 

with a variance-covariance matrix ( , ) ( ( ), ( ))i j i jC s s COV y s y s=  known for all pair of points 
( is , js ). In our application, ( , )i jC s s depends only of the distance ijd  between the two points is  
and js  and the average µ  is considered as a linear function of the geographic coordinates. Since 
there is a strong dependence between the y (longitude) and z (elevation) coordinates on the 
catchments,µ  is supposed to vary according to x (latitude) and z only. The levels of the model are 
1) the observations, 2) the parameters of µ  and C, and finally 3) the hyperparameters. The 
equations corresponding to these three levels are given below: 

Level 1: the observations 
~ ( , )WES Gau Cµ%

 [5] 

( , , ) x zx y z x zµ β β β= + +  [6] 

1( , ) exp( ( ) )i j ijC s s d κν φ−= −  [7] 
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Level 2: the parameters of µ  and C 
1~ ( , )N β ββ µ ν −  [8] 

1~ ( , )x x xN β ββ µ ν −  [9] 

1~ ( , )z z zN β ββ µ ν −  [10] 

Level 3: hyperparameters  
~ ( , )U lmin lmaxφ φφ  [11] 

~ ( , )U lmin lmaxκ κκ  [12] 

where U stands for the uniform distribution, and N for the normal distribution. ν, 
βν , xβν , yβν , zβν  are gamma distributed while βµ , xβµ , yβµ , zβµ follow a normal distribution. 

The parameters of these distributions will be chosen further in the text to have a non informative 
prior. 

2.2 The Gaussian Markov Random Fields model 
MRF are particularly suited for discrete data with a local dependence structure. In this case, the 

values of the process at the n  sites 1 2( , ,..., )ns s s  have a Markovian structure. The conditional 
probability of ( )WE iS s  given ( )WE jS s  depends only on the values at the neighbouring sites: 

( ( ) | ( ), ) ( ( ) | ( ), neighborhood( ))WE i WE j WE i WE j j iP S s S s i j P S s S s s s≠ = ∈  [13] 

where , 1,...,is i m=  are the points where the process is monitored. These points must be located 
on a regularly spaced grid of points so that the parameters can be assumed to be homogenous. 
Since the snow water equivalent measurement stations are not regularly spaced, the measured 
values are transferred to the grid points as follow: if we denote dx  to be the distance between two 
neighbour points of the grid, the measurement at the point is is approximated with the mean of the 
measurements in a square of dimensions dx dx×  centered on that point. 

The exact expression for P and the size of the neighbourhood depends on the considered 
problem. In our study, P  is a Normal distribution for which the mean depends of the values at 
adjacent sites: 

1

( )

( )

( ) ~ ( ( ( ) ), )
k j

k j

WE k k WE j j
x x dx or

y y dx

S s MVN S sµ α µ ν −

− =

− =

+ −∑% %  [14] 

k x k z kx zµ β β β= + +  [15] 

~ ( , )U lmin lmaxα αα  [16] 

It can be [e.g. Cressie, 1993] shown that equations [14], [15] and [16] are equivalent to 
1~ ( , ( ) )−−GauWES µ I V M  [17] 

where WES  is the vector of snow water equivalent on the interpolation grid, M  a diagonal 
matrix which’s thi  diagonal element is 1

ν , V a nn×  matrix such as ijv α=  if dxxx ji =−  
or dxyy ji =− , and 0ijv =  elsewhere. Equation [17] can be solved only if ( )−I V  is 
positive definite matrix, and α  must be below an upper bound maxα  to fulfill this condition 



148 

[Spiegelhalter et al., 2003]. More details about constraints on α , or how to efficiently solve 
equation [17] can be found for instance in Spiegelhalter et al. [2003], Rue [2001], or Rue and 
Follestad [2003] 

Parametersβ , xβ and zβ are the same as those of the equation [6] and have the same prior 
distributions. 

2.3. Kriging 
The goal of kriging is to estimate the value at a site ( )WES s% by a optimum linear combination of 

the values of ( ), 1,...,WE iS s i m=  at the sampled sites 1s  to ms . Optimum means here the 
absence of bias and the minimisation of the variance of the estimation error: 

0
1

( ) ( )
n

WE i WE i
i

S s a w S s
=

= +∑%  [18] 

The parameters a  and iw  are estimated so that the following relations hold: 

0 0( ( ) ( )) 0WE WEE S s S s− =%  [19] 

0 0 0 0,
( ( ) ( )) min ( ( ) ( ))

i
WE WE WE WEa w

VAR S s S s VAR S s S s− = −% %  [20] 

To solve equations [19] and [20] the snow water equivalent is modelled as follows 
( ) ( ) ( )WES s s sµ δ= +  [21] 

where )(sµ  is a deterministic structure for the average and )(sδ  a random stationary spatial 
process with a known structure of covariance. The spatial dependence of the process generally is 
described by the semi-variogram ),( ji ssγ defined by: 

2 ( , ) ( ( ) ( ))i j WE i WE js s VAR S s S sγ = −  [22] 

In our application, )(sµ  is constant and ),( ji ssγ  is manually fitted to the snow water 
equivalents measurements. When the covariance function exists,it is in close relationship with the 
variogram: 

( )( , ) ( ) ,i j i i js s VAR s C s sγ = −  [23] 

In this work, linear trends due to x and z coordinates are computed using the least square 
methods and removed before kriging: 

0( , , ) ( , , )WE x zS x y z x z x y zβ β β ε= + + +  [24] 

ε  is interpolated with ordinary kriging, then the values of snow water equivalent are obtained 
using equation [24].  

3. APPLICATION 

3.1. Application site 
The application was carried with the mid-March 1994 and mid-March 1995 snow water 

equivalent measurements of the Gatineau watershed, located in Quebec, Canada. 22 measures 
were available for each year (Tables 1 and 2). Notice that it takes up to a week for the technical 
staff to measure the SWE at all locations. The predictions were on a rectangular grid with 10 km 
distance between adjacent points. The limits of the catchments, the prediction grid and the 
measurement station are represented on Figure 1a while the topography of the area is shown on 
Figure 1b. These two years were chosen because the dependence structure between snow water 
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equivalent and altitude are very different: there is a clear linear relationship for the 1994 data 
(Figure 2a) that could not be found for 1995 (Figure 2b). The reason for this is that there was an 
early temperature rise in mid-March 1995 that caused part of the snow to melt: maximum 
temperature reached 15C at the Maniwaki Airport meteorological station on the 14th of March, 
1995, whereas the climatological mean temperature for March at Maniwaki is –5C. This station is 
located right close to the center of the watershed, and is hence representative of the basin average.. 
Since melting patterns are different of those of snow accumulation, the usually observed trend of 
snow water equivalent with altitude and longitude no longer existed. The 1995 data set was 
included in the study to find out the impact of snow melt during the measurement period on snow 
interpolation uncertainty. 

 

Table 1: Snow water equivalents measurements of March 1994 with longitudes, latitudes and altitudes 
of measurements points. 

 
Longitude 

(deg.) 
Latitude 

(deg.) 
Altitude 

(m) 
Snow water equivalent measurement (cm) 

–76.4834 45.6167 137 9.4 
–75.4167 45.5667 59 10.4 
–75.7 46.1834 270 13 
–75.5667 46.5667 251 19 
–75.1667 47.2167 381 24.9 
–75.1 47.1334 386 24.1 
–75.1334 46.9334 381 20.8 
–76.3834 46.8667 355 18.3 
–76.5 47 395 16.8 
–77.05 47.4333 365 13.2 
–75.3667 48.1167 450 19.8 
–75.1167 46.6334 325 16.3 
–76 46.3833 180 11.9 
–79.25 47.5667 375 13.5 
–77.2833 47.6333 400 20.3 
–77.3667 47.85 400 16.8 
–78.3 47.8 400 21.3 
–74.7167 47.4 452 24.9 
–74.6834 47.6834 510 29.7 
–75.7833 45.5 80 13.7 
–75.95 45.8333 234 9.9 
–75.9833 46.7167 230 16 
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Table 2: Snow water equivalents measurements of March 1995 with longitudes, latitudes and altitudes 
of measurements points. 

Longitude 
(deg.) 

Latitude 
(deg.) 

Altitude 
(m) 

Snow water equivalent measurement (cm) 

–75.4167 45.5667 59 19.6 
–75.7833 45.5 80 18.3 
–76.4834 45.6167 137 13.5 
–76 46.3833 180 11.4 
–75.9833 46.7167 230 14.5 
–75.95 45.8333 234 6.7 
–75.5667 46.5667 251 20.6 
–75.7 46.1834 270 9.4 
–75.1167 46.6334 325 11 
–76.3834 46.8667 355 16.3 
–77.05 47.4333 365 16.3 
–79.25 47.5667 375 4.8 
–75.1667 47.2167 381 18.2 
–75.1334 46.9334 381 8.4 
–75.1 47.1334 386 23.4 
–76.5 47 395 16.5 
–77.2833 47.6333 400 23.1 
–77.3667 47.85 400 10.8 
–78.3 47.8 400 10.5 
–75.3667 48.1167 450 9.1 
–74.7167 47.4 452 17 
–74.6834 47.6834 510 11.2 

 

a) 

 

b) 

 
 

Figure 1: Application site: a) limits of the catchment, prediction grid and snow measurement stations; b) 
topography. 
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Figure 2: Scatter plot showing the relationship between snow water equivalent and altitude for 1994 data (a) 
and 1995 data (b). 

3.2. Snow water interpolation with the Bayesian models 

3.2.1. Prior specification for the GRP model 

Since no information was available about the values of the parameters, non-informative priors 
were used: (0.001,0.001)Γ  for Gamma-distributed parameters (ν, βν , xβν , yβν , zβν ), and 

(0,1 6)N E  for the parameters having a normal distribution ( βµ , xβµ , yβµ , zβµ ). The limits of 
the uniform distributions of φ  (resp. κ ) were set to 0.01lminφ = , max 0.8l φ =  (resp. 

0.9lminκ = , max 1.1l κ =  ). κ was constrained to be close to 1 because it proved to be very 
difficult to update, probably because of the small sample size. Updating of the a priori dependence 
structure will thus be mainly performed through φ . However, these bounds for φ  and κ  still 
allow the variogram (equation [8]) to take a very wide range of shapes. 

Prior specification for the MRF model 

The priors parameters of the MRF model are the same as those of the GRP model, except for the 
spatial dependence parameter α; The upper bound for α to have the matrix ( )−I V  in equation 
[17] be positive definite is 0.93; Spiegelhalter et al. [2003] recommend giving to α a prior 
distribution close to the upper bound to have a significant spatial dependence. α was thus given an 
uniform prior distribution between 0.8 and 0.93.  

3.2.2. MCMC runs and inference on parameters 

The two models were applied using the WinBugs software [Spiegelhalter et al., 2003] and its 
spatial extension GeoBugs [Thomas et al., 2002] using standardized covariates (x,z). The variable 
y (latitude) was not used because it was highly correlated with altitude for this basin. 

For each Bayesian model, N = 35 000 runs of the MCMC algorithm were considered. The 
convergence of the parameters was successively tested with Geweke (1992) convergence criteria 
on the 9 000 last iterations (the 1 000 first iterations were discarded since the MCMC chains had 
not yet reached their stationary distributions). The inference on the parameters posterior 
distributions were performed using the 25 000 last iterations. 
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3.3. Snow water interpolation with ordinary kriging 
First, the parameters of the linear relationship between the snow water equivalent and the x and 

z geographical coordinates is computed using ordinary least squares methods:  
3.5754 0.000 0.0346 ( , , ) (1994)

( , , )
9.4534 0.000 0.0054 ( , , ) (1995)

ε
ε

− + + +⎧
= ⎨ + − +⎩

WE
x z x y z

S x y z
x z x y z

 [25] 

The ordinary kriging was carried out with software Vesper 1.6 (Variogram Estimation and 
Spatial Prediction with Error) developed by the Australian Center for Precision Farming [Minasny 
et al., 2002]. The variograms were adjusted using an exponential model for both years: 

8.065 1 exp( ) (1994)
16892

( , )

7.608 13.10 1 exp( ) (1995)
14263

γ

⎧ ⎛ ⎞
− −⎪ ⎜ ⎟⎜ ⎟⎪ ⎝ ⎠= ⎨

⎛ ⎞⎪ + − −⎜ ⎟⎪ ⎜ ⎟
⎝ ⎠⎩

ij

i j
ij

d

s s
d

 [26] 

The adjusted variograms are compared on Figure 3 and 4 along with the probabilistic GRP 
variogram deduced from equations [7] and [23]. To illustrate the difference between the kriging 
variogram and the GRP variograms, figures 3.b and 4.b represent the value of the variograms at a 
distance of 50 000m. this value is a single point for kriging, and a probability distribution for the 
GRP model. Observed data between 40 000m and 60 000m were added so that the fit of each 
variogram model can be visually estimated. 

 
a) b) 

 
 

Figure 3 : Comparion of Kriging variogram and probabilistic GRP variogram for march 1994: a) 
whole wariogram; b) “cross section” of variograms shown in a) at 50 000 m, comparing data, 
kriging variogram and GRP probabilistic variogram. 
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a) b) 

 

Figure 4 : Comparion of Kriging variogram and probabilistic GRP variogram for march 1995: a) whole 
variogram; b) cross section” of variograms shown in a) at 50 000 m, comparing data, kriging variogram and 

GRP probabilistic variogram. 

4. RESULTS AND DISCUSSION 

The probability distributions of all the parameters for both Bayesian models were obtained from 
the MCMC runs. The mean and standard deviation of these parameters are given in Table 3 (GRP 
model, March 1994), Table 4 (MRF model, March 1994), Table 5 (GRP model, March 1995) and 
Table 6 (MRF model, March 1995). As an example, the whole probability distributions of the 
parameters are represented on Figure 5 for the GRP model, March 1994. The parameters 
distributions for the other MCMC simulations are very similar. It can be noticed that zβ  is 
negative for March 1995 suggesting that snow water equivalent is diminishing with altitude. As 
highlighted previously, examination of the meteorological data of this year showed that very high 
positive temperature occurred while measurements were being made, causing the melt of a 
significant amount of snow. Since the melting rate pattern is very different from the linear 
relationship described in equation [6], there was much more uncertainty in the behaviour of the 
mean of the process. This is the reason for which no clear relationship between altitude and snow 
water equivalent could be found for 1995 data (Figure 2b). This uncertainty is caught by the GRP 
model through higher parameters standard deviations and smaller precision parameter (inverse 
variance) for March 1995 (Table 3). A similar conclusion can be drawn for most of the parameters 
of the MRF model, but the local dependence parameter and its variance remains quite unchanged, 
suggesting that local dependence structure is not affected by snow melt. This higher uncertainty 
for the March 1995 data model is not taken into account explicitely when we use kriging to predict 
SWE. The single point interpolation standard deviation given by kriging models is thus misleading 
since it does not take into account uncertainty neither in trend fitting nor in variogram fitting. To 
illustrate this major advantage of the Bayesian interpolation models as compared to kriging, the 
1%, 5% and 10% confidence intervals of the GRP variogram are also represented in Figures 3 and 
4. It can be seen the general variogram shape is the same for the two models, and that the 
confidence intervals of the GRP model are wider for 1995, because of the weaker spatial structure 
for that year. The relationship of snow water equivalent with x is also weaker for the 1995 data for 
both Bayesian models. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

 

(f) 

 

Figure 5 : Histograms of the GRP parameters (March 1994): a) β ; b) xβ ; c) zβ ; d) υ ; e) φ ; f) κ ;  
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Table 3: Mean and standard deviation of GRP parameters (March 1994) 

Parameter Mean Standard deviation 
β  17.23 3.863 

xβ  1.904 1.323 
zβ  3.448 1.208 

ν  0.0626 0.0334 
φ  1.478 0.8081 
κ  0.7885 0.4235 

Table 4: Mean and standard deviation of MRF parameters (March 1994) 

Parameter Mean Standard deviation 
β  17.51 0.9019 

xβ  1.933 0.5497 
zβ  2.881 1.842 

ν  0.1467 0.1135 
α  0.8974 0.01398 

Table 5. Mean and standard deviation of GRP parameters (March 1995) 

Parameter Mean Standard deviation 
β  13.82 7.037 

xβ  1.674 1.954 
zβ  –1.834 1.836 

ν  0.010 0.007 
φ  0.408 0.231 
κ  0.393 0.257 

Table 6: Mean and standard deviation of MRF parameters (March 1995) 

Parameter Mean Standard deviation 
β  14.02 1.47 

yβ  3.006 3.37 
zβ  –3.98 3.82 

ν  0.016 0.012 
α  0.897 0.014 

 
 
Histograms of the GRP parameters drawn from the MCMC runs for March 1994 are presented 

in Figure 5. The parameter histograms for 1995, and for the MRF model are not presented since 
they are very similar. These histograms provide much more information on the parameter than a 
single value, and can be used to compute the probability distribution of any quantity that is a 
function of snow water equivalent on the watershed.  

The mean interpolation results of the three spatial models are given in Figure 6 and Figure 7 for 
1994 and 1995 data respectively. As expected, the value of snow water equivalent pattern follows 
the topography for 1994. This pattern is respected by the Bayesian approaches even where the 
measurement station density is low. Since each of the three models is able to give a standard 
deviation for a single interpolation point, the mean standard deviation of each model was 
computed for each year on the interpolation grid (Table 8). For the 1994 data (resp. 1995), the 
mean interpolation standard deviation of the GRP model was 22% (resp. 1045%) higher than that 
of kriging, while the mean MRF model interpolation standard deviation was 23% lower (resp. 
1229% higher). For 1995, kriging thus underestimates uncertainty by an order of magnitude. 
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a) 

 

 
b) 

 
c) 

 

d) 

 
Figure 6:Mean estimated snow water equivalents for the three models (March 1994): a) GRP; b) MRF; c) 

Kriging; d) topography of the area. 

a) 

 

 
b) 

 
c)  
 

 

d) 

 

Figure 7:Mean estimated snow water equivalents for the three models (March 1995): a) GRP; b) MRF; c) 
Kriging; d) topography of the area. 
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Another advantage of the Bayesian approach is that it is straightforward to predict any function 
of the grid point values, for example the volume of snow on the watershed. The uncertainty on the 
volume of snow present on the watershed as estimated by the GRP and MRF models is presented 
by Figure 8. The expectation and standard deviation of these probability distributions is presented 
in Table 7, along with the basin average obtained by the kriging technique. Note that the standard 
deviation for a single point given by kriging does not allow us to compute the standard deviation 
of the total volume since errors at two neighbor points are dependent. 

Table 7: Mean interpolation standard deviation for each model and each year 

Model Mean prediction standard deviation (cm) 
 March 1994 March 1995 

Kriging 3.98 0.71 
GRP 4.89 8.13 
MRF 3.03 9.44 

Table 8: Total snowpack water equivalent on the catchment. 

 March 1994 March 1995 
 Mean 

(hm3) 
Standard deviation 

(hm3) 
Mean 

(hm3) 
Standard 

deviation 
(hm3) 

Kriging 4.03E+5  3.01E+5 
 

 

GRP 3.93E+5 0.13E+5 2.95E+5 0.28E+5 
MRF 3.99E+5 0.23E+5 3.21E+5 0.64E+5 

  
Notice that the average values are quite close for the three methods, and the MRF model leads 

to a more uncertain forecast than the GRP. Choosing between the MRF and GRP is equivalent to 
choosing between two different parameterizations and correlation functions (at least in the case of 
fixed grid configurations). This task can be more easily performed when expertise on the 
covariance structure to be expected of the measured data is available. However, if one is at ease 
with the kriging hypotheses but would like to take into account uncertainty on the trend model and 
on the variogram, we would suggest using the GRP model. Indeed, the first two levels of the GRP 
model are exactly the hypotheses used in optimal interpolation theory [Gandin, 1963], which 
differs from kriging only in implementation details. 

It has been explained at the onset that Bayesian approaches are attractive because they provide a 
full distribution of snow water equivalent at each interpolation point and because of their capacity 
to incorporate information from covariates. The latter feature is also incorporated in cokriging 
approaches, which were not used in this study.  

It should also be mentioned that the Bayesian models were implemented on untransformed data. 
Since our application looked at SWE values > 5 mm or more, the transformation was deemed to 
be superfluous. However, a model that would consider smaller values of SWE should be applied 
on transformed data in the domain [0,∞) to avoid modelling errors near 0. 

It can be seen however that uncertainty can best be estimated by the Bayesian models. In fact, 
the posterior distributions can be used to draw a number of realizations, thereby ensembles of 
snow water equivalents that can be used as inputs to hydrological models and find out their 
impacts on flood parameters. Confidence interval of critical flood parameters such as flood 
volume, peak and date of occurrence can be computed and help for risk-based water resources 
managements. The consequences of ignoring the uncertainty on the SWE on streamflow forecasts 
are currently being evaluated using the hydrological model HYDROTEL (Fortin et al., 2001), and 
will be reported later this year.  
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(a) 

 
 
 

(b) 

 
 

c) 

 

d) 

 
 

Figure 8: Histograms of the total snow water equivalent on the watershed : a) March 1994, GRP; b) March 
1995, GRP; c) March 1994, MRF; d) March 1995, MRF. 

CONCLUSION 

The use of Bayesian hierarchical models in which two spatial models (the gaussian random 
processes (GRP) and Gaussian Markov Random Fields (MRF)) are compared to adequately 
interpolate snow water equivalent are investigated in this paper. They are compared to ordinary 
kriging and shown to better estimate the uncertainty of the total snowpack water equivalent: 
although all three models give essentially the same mean estimation, the outputs of the Bayesian 
models are more complete and easily amenable to probabilistic analysis of hydrological risks 
(flood risk or water shortage for instance). Bayesian modelling of snow water equivalent can thus 
help improve management of hydrological systems. This very flexible but computationnally-
intensive approach is becoming everyday more accessible to practitioners because of advances in 
MCMC techniques and growing computing power. It is therefore expected that it will become 
widely used in operational hydrology. 
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LIST OF SYMBOLS 

θ  Parameter vector 
α  Spatial dependance parameter of the GRP model 
µ  Mean vector 
γ  Variogram 
φ  Spatial dependance parameter of the GRP process 

, ,x zβ β β  Parameters of the linear relationship between geographical coordinates and the 
process mean 

( , )a bΓ  Gamma distribution with parameters a and b 
κ  Spatial dependance parameter of the GRP process 
ν  Precision (inverse variance) 

ijd  Distance between points si et sj 

C  Variance covariance matrix 
I  Identity matrix 

( , )MVN µ C  Multivariate normal distribution with mean µ  and variance covariance matrix 
C . 

2( , )N µ σ  Normal distribution with mean µ and variance σ2 

WES  Snow water equivalent 

WES%  Snow water equivalent measures reported to grid points (MRF) 

, ,x y z  Geographical coordinates 
y  Observations vector 
y~  Unobserved data 

( , )U a b  Uniform distribution between a and b 
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