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ABSTRACT 

In this research we examine active and passive microwave to snow water equivalent (SWE) and 
to investigate the potential of combining active and passive microwaves to improve the estimation 
of SWE. The study area is located in Great Lakes area between the latitudes of 41N–49N and the 
longitudes of 87W–98W. Passive microwave are obtained from DMSP SSM/I sensors provided by 
NSIDC. Active microwave were obtained from different sensors: 1) RADARSAT C-Band SAR. 
2) QuikSCAT Ku-band (13.4GHz) for both vertical and horizontal polarizations. The ground truth 
data was obtained from SNODAS data set produced by NOHRSC. An Artificial Neural Network 
model was defined to model various combinations of inputs to SWE. The results indicate that 
none of the active microwave channels produce satisfactory results. However, when combined 
with passive microwave, they improve the estimated SWE. 

INTRODUCTION 

Microwave remote sensing techniques have been effective for monitoring snowpack parameters 
(snow extend, depth, water equivalent, wet/dry state). Snow parameters are extremely important 
for input to hydrological models for understanding changes in climate due to global warming. 
Snow parameters been investigated by numerous researchers using many sensors such as SMMR 
and SSMI for passive microwave and SAR and QSCAT for active microwave. Space-borne 
microwave sensors can monitor characteristics of seasonal snow cover at high latitudes regardless 
of lighting conditions, time of the day, and vegetation.  

In passive microwave radiometer, microwave energy emitted from the ground surface is 
transmitted through the snow layer into the atmosphere and recorded by the sensor. Snow 
parameters can be extracted from remote sensing data by empirical algorithms. Hallikainen (1984) 
introduced his algorithm for estimating SWE using passive microwave SMMR data. The process 
involved the subtraction vertical polarizations of 18 and 37 GHz frequencies. The subtracted 
value, dT, was used to define linear relationships between dT and SWE. Chang et al. (1987) 
proposed using the difference between the horizontally polarized channels SMMR 37 GHz and 18 
GHz to derive snow depth – brightness temperature relationship for a uniform snow field (Chang 
et al 1987). Goodison and Walker (1995) introduced the most widely used algorithm for North 
America. The algorithm was originally for Canadian prairies. It defines a linear relationship 
between GTV ([37V–19V]/18) and SWE. They also suggested using 37H and 37H polarization 
differences for identifying wet snow. Derksen et al. (2004) developed a new algorithm which 
derives SWE for open environments, deciduous, coniferous, and spars forest cover [SWE = 
FDSWED + FC SWEC + FS SWES + FOSWEO]. The algorithm represents an improvement, however 
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still underestimates SWE in densely forested areas. Tedesco et al. (2004) developed and tested an 
inversion technique for retrieval of SWE and dry snow depths based on artificial neural networks 
(ANN) by using 19- and 37-GHz SSM/I measured brightness temperatures.  

Hallikainen et al 2003 combined active (QuikSCAT/SeaWinds) and passive (SSMI/DMSP) data 
for monitoring key snow parameters in Finland. The results show that combined active and 
passive microwave sensors provide useful diurnal and seasonal information. These results are 
more accurate than those obtained by only passive microwave. In another research Hallikainen 
showed that using space borne scatterometer (QuikSCAT onboard SeaWinds) for dry snow 
conditions, the backscattering coefficient increases with increasing SWE. For wet snow condition 
backscattering coefficient decreases with increasing SWE. Ku-band scatterometer were used 
successfully to determine the onset and the end of snow melt, and to derive time series for the 
fraction of snow-free ground during the seasonal snow melt period (Hallikainen et al 2004).  

Synthetic Aperture Radar (SAR) particularly C-band SAR has shown the potential for 
monitoring snow and ice for more than two decades. The high spatial resolution and the 
independence of the sensors from sun illumination and cloud cover make SAR an ideal tool for 
snow studies. Launched in 1995, Radarsat-1 offers spatial resolutions between 10m to 100m and a 
swath up to 500km. To estimate SWE using C-band SAR, Bernier et al. (1998) introduced an 
approach based on the fact that snow cover characteristics influence the underlying soil. The snow 
influence on soil temperature affects the dielectric properties of the soil which has a major role on 
the backscattered signal. To recover the SWE from SAR data an algorithm made of two equations 
was used. The first equation defines a linear relationship between the snow thermal resistance and 
the backscattering ratio between a winter image and a reference (snow-free) image in DB. The 
snow-free image helps to eliminate the radiometric distortion due to topography as well as to 
minimize the effect of soil roughness on the signal. The second equation is a linear relationship 
between thermal resistance and the SWE. To estimate SWE from thermal resistance the mean 
density of the snowpack has to be derived. This approach has been applied for cold winter 
conditions and dry snow (Bernier et al. 1999). The critical variables influencing the algorithm are 
variety of land cover, specifically forest density, Snowpack properties (depth>2m), and severe 
topography. In a research on passive and active airborne microwave remote sensing of snow cover 
Sokol et al. (2003) showed that SAR sensors are highly sensitive to changes in the dielectric 
constant and have better spatial resolution than their passive counterparts. They concluded that 
passive techniques estimate SWE most accurately under dry snow conditions with minimal 
stratified snow structures (Sokol et al. 2003). 

The focus of this research is estimating Snow Water Equivalent (SWE) in Great Lakes area by 
using active and passive microwaves. Different approaches were examined for SWE estimations 
by RADARSAT SAR and also QuikSCAT-Ku along and passive SSM/I.  

STUDY AREA  

It is also located on the transitional zone for snow meaning that the northern part of the study 
area is covered by snow for the whole winter season however for the southern part there is a 
pattern of snow-fall and snow melt within the season. In addition to snow pattern, the land cover 
type varies a wide range including, Evergreen Needle leaf forest, Deciduous Broadleaf forest, 
cropland, woodland and dry land (Figure 1). 
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Figure 1. Study area and SSM/I and RADARSAT coverage 

DATA USED 

SSM/I 
SSM/I passive microwave radiometer with seven channels is operating at five frequencies (19, 

35, 22, 37, and 85.5 GHz) and dual- polarization (except at 22 GHz which is V-polarization 
only). The sensor’s spatial resolution varies for different channel frequencies. In this study we 
used Scalable Equal Area Earth Grid EASE-Grid SSM/I products distributed by National Snow 
and Ice Data Center (NSIDC). EASE-Grid spatial resolution is slightly more than 25km (25.06) 
for all the channels (NSIDC) although the recorded resolution of the sensor for longer wavelengths 
is more than 50km. The three EASE-Grid projections comprise two azimuthal equal-area 
projections for the Northern or Southern hemispheres, respectively and a global cylindrical equal 
area projection. In our study we used a Northern hemisphere azimuthal equal-area. The study area 
is covered by 980 (28 by 35) SSM/I EASE-Grid pixels. 

Ku-Band 
The QuikSCAT/SeaWinds scatterometer provides normalized radar cross section measurements 

of the Earth’s surface at unprecedented coverage and resolution. The QuikSCAT sensor on the 
SeaWinds satellite operates at 13.4 GHz vertical and horizontal channels. The sigma (0) browse 
product of QuikSCAT has the grid size of 5 pixels per degree or about 22.5km at the equator. In 
order to match SSM/I grid size the QuikSCAT images were averaged to 25km resolution for the 
study area. 

Normalized Difference Vegetation Index (NDVI) 
NDVI is used to represent the variety of land cover in the study area. The NDVI data obtained 

from the NOAA/NASA Pathfinder AVHRR is distributed at Goddard Space Flight Center 
(GSFC). The spatial resolution is 8km by 8km obtained within a 10 day period that has the fewest 
cloud. To match the with RADARSAT images, NDVI image was resampled and projected to 
UTM.  
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RADARSAT Images 
RADARSAT ScanSAR images were obtained for February 06, 2003 (winter image), February 

02, 2006, and May 01, 2002 (snow-free image) as show in Table 1. ScanSAR images (500km by 
500km) have the nominal spatial resolution of 100m. The ScanSAR products currently offered by 
us do not come in a map-projected format. However, images have the geo-referencing information 
contained in the CEOS format. This information is derived from the satellite orbit (ephemeris) and 
is typically accurate to 100–200 meters, depending on beam mode and the topography. To reduce 
geometric distortions caused by radar sensor viewing geometry satellite movement, earth 
curvature and rotation, both RADARSAT images were registered to a Landsat image of the study 
area. More than 15 Ground Control Points and a second order model and nearest neighbor 
resampling mode were used to register the RADARSAT images. The images were projected to a 
UTM projection and subseted for the in-common area of coverage.  

Table 1. RADARSAT images for Great Lake area 

 Image Date Time(UTC) Inc Angle NW NE SW SE Center
48 51 N 49 46 N 43  43 N 44 37 N 46 44 N
94 13 W 86 37 W 92 27 W 85 33 W 89 42 W
48 26 N 49 17 N 43 50 N 44 40 N 46 53 N
94 47 W 87 46 W 93 17 W 86 50 W 90 44 W
48 37N 49 27 N 44 00 N 44 51 N 46 47 N

93 47 W 86 45 W 92 17 W 85 49 W 89 40 W

Winter 2/6/2004 23:53 34.26

Winter 2/2/2006 23:47 34.26

Snow-free 5/1/2003 23:49 34.26
 

 

Ground Truth Data  
NOAA National Weather Service's National Operational Hydrologic Remote Sensing Center 

(NOHRSC) started producing SNOw Data Assimilation System (SNODAS), beginning 1 October 
2003. SNODAS includes and procedures to assimilate airborne gamma radiation and ground-
based observations of snow covered area and snow water equivalent, downscaled output from 
Numerical Weather Prediction (NWP) models combined in a physically based, spatially 
distributed energy- and mass-balance model. The output product has 1km spatial and hourly 
temporal resolution.  

METHODOLOGY AND MODEL 

The objective of this study is to estimate snow depth and SWE using active and passive 
microwave images. However, active microwave RADARSAT SAR and passive microwave SSM/I 
are totally different in their nature and applications. RADARSAT images have high spatial 
resolution and are suitable for regional studies. On the other hand, low spatial resolution and high 
temporal resolution of SSM/I make it suitable for studies on a global scale. In order to consider 
above differences, each of the active and passive data were analyzed separately to investigate their 
potential to estimate snow parameters. This section focuses on: 1) Using high resolution active 
microwave RADARSAT SAR to estimate SWE. This section focuses on how to process 
RADARSAT images and corresponding ground truth data along with suggesting modeling 
approaches to improve the estimations. 2) Using low resolution passive SSM/I and active 
QuikSCAT with statistical based models. Also, the improvement by combining various data types 
was quantified.  

An adaptive network is a network structure that consists of a number of nodes (neurons) 
connected through directional links. Each node represents a process unit, and the links specify 
casual relationship between the connected nodes. Nodes are adaptive meaning that the outputs of 
these nodes depend on modifiable parameters pertaining to these nodes. The learning rule specifies 
how these parameters should be updated to minimize error which is discrepancy between the 
networks actual output and desired one. In our study we used a feed forward backpropagation 
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model. The network has two hidden layers with ten nodes at each layer. To train the network data 
were divided into three sets (training, validation, and test). The model testing is the process by 
which the input vectors from input/output data sets on which the network is not trained, are 
presented to the trained model, to see how well the ANN model predicts the corresponding data 
set output values. The other type of validation which is also referred as checking data set is used to 
control the potential for the model over fitting the data. In principle, the model error for the 
checking data set tends to decrease as the training takes place up to the point that overfitting 
begins, and then the model error for checking data suddenly increases. 

High Resolution Active Microwave RADARSAT SAR 
Four different approaches for ANN input data were considered: A. Input consists of the only 

backscattering ration at 25km resolution. B. Input includes NDVI data in addition to 
backscattering both in 25km resolution. C. Input includes NDVI data in addition to backscattering 
with modified ANN training. D. Input includes NDVI and Backscattering in 5km averaged 
resolution.  

A. Input consists of the only backscattering ration at 1km resolution  
In the first approach, the backscattering ratio was used as the input for the ANN model. 

Figure 5.8 shows the spatial variation of the backscattering ratio while the water bodies are filtered 
out of the image. The higher backscattering ratio is detected in high latitudes and around the lake. 
The scatter plot of backscattering versus the SWE indicates low correlation.  
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Figure 2. Spatial variation of backscattering ratio and SWE in 1km resolution, February 06, 04 

 

 

R=0.22 

 
Figure 3. Backscattering vs. SWE, February 06, 04 
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The ANN model was trained using backscattering ratio as input and SWE the output of the 
model. The simulated SWE based on the backscattering ratio for February 06, 2004 is shown in 
Figure 4. Both the produced image and the corresponding scatter plot show unsatisfactory results. 
The model output is highly underestimated and show very low correlation coefficient. Introducing 
land cover characteristics can be helpful to increase the accuracy of the model. 
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Figure 4. Spatial variation of SWE for February 06, 04 and the scatter plot of model output vs. ground truth 

SWE 

B. Input includes NDVI data in addition to backscattering both in 1km resolution 
In order to introduce the land cover characteristics in a quantitative way the NDVI image of 

the study area was added as an input to the ANN model. The model was trained and validated 
using the data from two winter days of February 06, 2004 and February 02, 2006. The simulated 
SWE for February 06, 2004 is illustrated (Fig 5). 
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Figure 5. Simulated SWE based on NDVI and Backscattering for February 06, 04 and the scatter plot of 

model output vs. ground truth SWE 

The above results show the increase of correlation by adding the NDVI to the ANN model. On 
the other hand, the problem with underestimation of SWE still exists. As shown in the scatter plot, 
for SWE varying between 0 to 250mm the model output mostly varies between 50 to 150mm. This 
problem might originate from the training process considering the fact that there are more pixels 
with low values of snow than high values. This forces the training towards the low values in order 
to minimize the RMSE of the total estimation. To minimize the influence of number of the pixels 
with different values for SWE, the network was trained with same number of pixels from each 
class as the third approach. 
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C. Input includes NDVI data in addition to backscattering with modified ANN training 
In the third approach the pixels were divided to four classes based on the SWE values 

(SWE<50, 50<SWE<75, 75<SWE<175, SWE>175mm). A fixed number of pixels from each class 
were selected for training the ANN. The neural network was trained and simulated. Figure 6 
shows the spatial variation of the simulated SWE. 
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Figure 6. Simulated SWE based on NDVI and Backscattering using equal number of pixels from each class 

The above results confirm the effect of classification in the training process. The scatter plot 
shows an increase in the range of estimated SWE from 120 to 175mm.  

D. Input includes NDVI and Backscattering in 5km averaged resolution.  
The final approach consists of decreasing the resolution to 5km. Both the backscattering image 

and the ground truth data were averaged to 5km resolution using the nearest neighbor method for 
resampling (Fig 7).  

 
Figure 7. Backscattering ratio (left) and SWE (right) for Feb. 06, 04 averaged to 5km X 5km 

Figure 8 shows the variation of backscattering ratio and SWE for all pixels in the study area. First 
pixel is located in the lower left corner of the images. The variation of SWE has a consistent trend. 
It increases by number of the pixels which indicates higher SWE in the northern part of the  
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image. On the other hand, the backscattering ratio trend is almost constant. Also, the range for the 
ratio is highly different for years 2004 and 2006. This limits any kind of modeling for estimating 
SWE from backscattering. The comparison of the scatter plots of SWE versus backscattering is 
shown in Figure 9.  
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Figure 8. Variation of backscattering ratio and SWE for different parts of the study area 

 

 

Backscattering Ratio (DB) Backscattering Ratio (DB) 

Backscattering Ratio (DB) Backscattering Ratio (DB) 

SW
E 

(m
m

) 
SW

E 
(m

m
) 

SW
E 

(m
m

) 
SW

E 
(m

m
) 

2004 2004

2006 2006

 
Figure 9. Scatter plots of Backscattering vs. SWE at 5km resolution for two images (Feb 06, 04 & Feb 02, 

06) 
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The left scatter plots representing the complete dataset and the right ones are modified by 
eliminating the backscattering ratio higher than zero since only few percentage points are points 
have backscattering values higher than zero. This could be the effect urban areas that have high 
backscattering. The new scatter plots are shown in Figure 9. These scatter plots clearly show 
where SWE is in the range of 10mm to 60mm the backscattering range is very large. Also, the 
backscattering range between two years (2004 and 2006) is very different. This indicates that 
developing a model to estimate SWE using backscattering ratio is very difficult. A solution for 
this problem is modifying the model for each year. 

Low Resolution Active QuikSCAT and Passive SSM/I 

A. Evaluation of using NDVI and QuikSCAT in SWE estimation 
A feed forward backpropagation neural network model with 2 hidden layers, 20 neurons each 

layer, was developed. The output of the model consists of ground truth SWE data from NOHRSC. 
In order to evaluate the effect SWE on various microwave channels different combination of 
inputs were used. First, the input consisted four of SSM/I channels (19V, 19H, 37V, and 37H). Then, 
NDVI and SSM/I were introduced as the input to the model. Finally, QuikSCAT-ku along with 
SSM/I and NDVI were used as the input. For all above approaches the model was validated by a 
dependent data. In other words, the training and validation data were the same. Figure 10 shows 
the results for various approaches. SSM/I brightness temperatures have shown correlations with 
SWE to some extent. Adding NDVI to the input brings information about the land cover type for 
the ANN model and increases the accuracy of the estimate. By adding active QuikSCAT to the 
input we have an input of three independent data sets. The increase of correlation coefficients 
indicates that combining active and passive using a neural network can improve the SWE 
estimation. Figure 10 also indicates that combining SSM/I with QuikSCAT and NDVI produces 
the best results. The sudden decrease of correlation coefficients for days in February should be due 
to the existence of wet snow in parts of the study area which was already explained in chapter for 
snow cover estimation. 
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Figure 10. Correlation coefficients (R2) between estimated SWE and the corresponding ground truth data 

(winter 2003–2004, model validated by dependent data) 
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B. Using Active and Passive to Estimate SWE 
The results above showed that adding NDVI and QuikSCAT-ku increases the correlation 

between input of microwave channels and SWE. To investigate the capability of the model to 
estimate SWE, it was examined to independent data. The approach consisted of training the model 
with the data from the days before the selected day for estimation. Table 2 describes the approach. 
The results for correlation coefficients and RMSE in the table show an increasing trend for RMSE. 
This increase in the error originates from the increase in the average depth of snow during the 
winter season. For correlation coefficients there is an improvement in the beginning but it 
decreases after January 25, 2004. For the selected days in February especially Feb08, Feb16, and 
Feb23, The error increases dramatically. This is due to the wet snow conditions for those days. 
Wet snow can not be detected by passive SSM/I scattering channels. This section is already 
discussed in snow cover section. Figures 11 and 12 show the estimated snow for February 01, 
2004. It is observed that the model is incapable of detect and estimating deep snow. The scatter 
plot of the ground truth versus the estimate (Fig 11) illustrates the results in a quantitative way. 
The best fitted line (red line) is below the 1:1 line indicating underestimation of the estimate. 

 

Table 2: Estimating SWE by ANN model 

Training Data 
(Days) 

Validation 
Data (Day) 

Correlation 
Coe. RMSE Bias 

Dec06,Dec13 Dec 20 0.37 21 –14 
Dec06, 

Dec13,Dec20 Jan04 0.43 17 1 

Dec06,Dec13, 
Dec20, Jan04 Jan11 0.47 19 5 

Dec13,Dec20, 
Jan04,Jan11 Jan18 0.44 30 –11 

Dec20,Jan04, 
Jan11,Jan18 Jan25 0.53 45 –34 

Jan04,Jan11, 
Jan18,Jan25 Feb01 0.47 44 –30 

Jan18,Jan25, 
Feb01 Feb08 0.37 42 –31 

Jan18,Jan25 
Feb01,Feb08 Feb16 0.12 75 –58 

Jan25, Feb01, 
Feb08, Feb16 Feb23 0 90 –83 
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Figure 11. Estimated SWE by ANN (left) and SNODAS ground truth SWE (right), February 01, 2004 
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Figure 12. Estimated SWE by ANN vs. SNODAS ground truth SWE, February 01, 2004 

CONCLUSION 

Three RADARSAT images were obtained to investigate the potential of RADARSAT SAR in 
estimating SWE. The images were processed and georefenced using PCIGeomatica. The Ground 
truth data were obtained from NOHRSC SNODAS dataset through NSIDC. The backscattering 
ratio of RADARSAT images was derived by subtracting them from a reference image. The 
analysis indicates that backscattering ratio has limited correlation with SWE (20 percent). An 
ANN model was used to explore non-linear relationships between backscattering ratio and SWE. 
The results showed low correlation between estimated and ground truth SWE. In order to 
introduce land cover characteristics, an NDVI image was added to the input of the ANN model. 
The results showed a more than 15 percent improvement in correlation coefficient. To improve the 
estimation the input classified based on SWE values. This improved the range of the estimated 
SWE although it did not change the correlation coefficients. Finally the resolution was changed to 
5km. It was concluded that where SWE is in the range of 10mm to 60mm the backscattering range 
is very large. Also, the backscattering range between two years (2004 and 2006) is very different. 
This indicates that developing a model to estimate SWE using backscattering ratio is very 
difficult. A solution for this problem is modifying the model for each year. 
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In case of low resolution passive SSM/I and active QuikSCAT, the ANN model shows 
satisfactory result in dependent estimation of SWE. Also, adding QuikSCAT-Ku increased the 
accuracy of the estimated SWE by neural networks. It was concluded that estimating SWE by 
neural networks is highly dependent on training data. This can become a source of error on model 
development. In order to resolve this problem a large dataset is necessary. 
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