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Snow Wetness Estimation from SSM/I Data
Over Varied Terrain Using an Artificial Neural Network
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ABSTRACT

The Special Sensor Microwave/Imager (SSM/T) ra-
diometer is becorning a useful tool for large-scale
monitoring of snow wetness. To date, SSM/T snow
wetness algorithms have been developed using statis-
tical regression analysis for a specific region. How-
ever, the development of a general algorithm has be-
en impeded by the lack of adequate ground-based
snow wetness measurements and by the nonlinearity
between SSM/I brightness temperatures (Ty's) and
snow wetness over varied terrain. We used a previ-
ously defined linear relationship between snow wet-
ness (% by volume) and air temperature (°C) to es-
timate the snow wetness data at ground-based wea-
ther stations over varied terrain, SSM/I Ty observa-
tions were then linked with the snow wetness esti-
mates as an input/output relationship. An artificial
neural network (ANN) was designed to learn the re-
lationship. Results showed that the ANN method may
overcome the limitations of the existing regression
models in estimating snow wetness from SSM/T Tg's,
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INTRODUCTION

Knowledge of snow wetness, which is the liquid
water content in a snowpack, is important in predict-
ing the snowmelt runoff (Linlor ef 2/, 1981) and as-
sessing the snow strength (Brun 1989). Because snow
wetness has a significant effect on the microwave
emission at the snowpack surface, monitoring large-

scale snow wetness is possible through satellite
microwave radiometry (Chang er al. 1987, Rango
1993).

Recently, the Special Sensor Microwave/Imager
(SSM/1) radiometers, on board the Defense Meteoro-
logical Satellite Program (DMSP) F8, F10, and Fi1
satellites, have been used to produce global hydrolo-
gic data (Ferraro et al. 1994). The SSM/I is a seven-
channel, four-frequency, linearly polarized, passive
microwave radiometric system (Hollinger 1989),
which measures both vertically (V) and horizontally
(H) linearly polarized brightness temperatures (Tj's),
at 19.35, 37.0, and 85.5 GHz and only vertical polari-
zation at 22.235 GHz. Unlike in situ methods, the
SSM/I provides an indirect estimate of snow parame-
ters by using parameter retrieval algorithms with Ty's
as inputs. In order to develop the algorithm, SSM/I
Ty data along with ground truth data are required.

To date, SSM/I snow wetness algorithms (e.g., Sun
et al. 1995) have been developed using statistical re-
gression analysis for a specific region (usually, a
sparse-vegetated flat area). Since SSM/I Ty's increase
and depolarize as the vegetation density over the
snowpack increases (Hall ez 4l 1991), the existing al-
gorithms often overestimate snow wetness in areas
where evergreen forest cover dominates. Because of
this, existing SSM/I snow wetness algorithms have
limitations as general approaches for snow parameter
retrieval over different geographical areas.

Nevertheless, the development of a general algo-
rithm has been impeded by the lack of adequate
ground-based snow weiness measurements and by the
nonlinearity between SSM/I T, observations and
snow parameters over varied terrain. A study by Sun
ef al. (1995) indicated that snow wetness Wy (%
by volume) in the surface layer is significantly related
to concurrent air temperature T, (°C) by:
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Wonow = 1.0285 + 0.5708 % T, (1

Since data of air temperature are generally available,
Eq.(1) could be used to estimate the necessary
ground-based snow wetness data at different SSM/]
footprints to develop a general SSM/I snow wetness
retrieval algorithm.

On the other hand, the use of artificial neural net-
works (ANNs) to retrieve snow parameters from pas-
sive microwave data (Tsang ef @l 1992, Davis et al.
1993) has shown that ANNs have potential to learn
the relationship between Ty, patterns and snow para-
meters, whose complexity and nonlinearity make re-
trieval accuracy by existing regression methods im-
possible,

According to Simpson (1992), the backpropagation
(backprop) ANN method has shown to be identical to
the stochastic approximation technique for finding a
relationship between inputs and outputs when the in-
puts and outputs are extremely noisy. In this study,
we sampled the input/output relations between SSM/1
Ty's and concurrent ground-based snow wetness esti-
mates over a variety of geographical areas to train a
backprop ANN.

STUDY SITE AND DATA

A study area bounded by latitude 0of 40°N to 45°N
and longitnde of 100°W to 115°W, which contained
both plains and mountainous region in the western
United States, was selected to represent a variety of
vegetated terrain. Data of SSM/I Ty's and ground-
based snow wetniess from Oct, 1, 1989 to May 30,
1990, in the area were used for the study,

SSM/I Tg's from the DMSP-F8 satellite were ob-
tained from the Naval Research Laboratory. Due to
the failure of both SSM/T 85.5 GHz channels on
DMSP-FS, only T's of the lower frequency channels,
denoted as T19V, T19H, T22V, T37V, and T37H,
were available.

Ground-based measurements of daily snow water
equivalent (SWE), and maximum, minimum and ave-
rage air temperature over mountainous terrain were
obtained from the Soil Conservation Service (SCS)
SNOwpack TELemetry (SNOTEL) system. Data of
daily snow depth (SD), maximum and minimum air
temperature, and air temperature at the observing
time in the plains were derived from the National
Oceanic and Atmospheric Administration (NOAA)
cooperative weather observation network.

GROUND-BASED SNOW CLASSIFICATION

Daily snow conditions at each SNOTEL or NOAA
weather station at either 06:00 or 18:00 (i.e., the
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DMSP-F8 local crossing time) were further classified
as: (1) snow-free if SWE or 3D was equal to zero,
(2) dry snow if SWE or SD increased from the previ-
ous observation time and the concurrent air terpera-
ture was below 3.5°C, based on Eq.{1} by assuming
the wetness of dry snow was below 3% by volume,
(3) wet snow if SWE or SD was not equal to zero and
the concurrent air temperature was greater than or
equal to 3.5°C, or {(4) refrozen snow if the concurrent
air temperature was below fieezing and the snow
condition of the previous overpass was either wet or
refrozen.

For the SNOTEL stations, the daily minimum and
average air temperature were assumed to be the con-
current air temperature at 06:00 and 18:00, respect-
ively. For NOAA weather stations, the concurrent air
temperature at 06:00 or 18:00 was set to be the air
temperature at observing time if the time was bet-
ween 04:00 and 07:00 or between 16:00 and 19:00,
respectively; otherwise, the concurrent air tempera-
ture at 06:00 was equal to the minimum air tempera-
ture and that at 18:00 was extrapolated. The extrapo-
lation was done by assuming the maximum air tempe-
rature occurred at 14:00 and linearly decreased to the
temperature at observing time if after 14:00 or the
maximum air temperature of previous day decreased
to the temperature at observing time if before 14:00.

INTEGRATION OF SSM/1 AND SNOW DATA

Because the latitude/longitude coordinates of the
SSM/I footprints change with each overpass, a neigh-
borhood merging method was employed to integrate
the SSM/I and in sit: data into one database, by sear-
ching the ground weather stations, which fell within a
15-km search radius around a particular SSM/I lati-
tude/longitude location (i.e., approximately the size
of a 37.0 GHz footprint). Values of concurrent air
temperature in each SSM/I footprint were averaged.
Snow wetness at each footprint was then estimated
using Eq.(1}.

ANN-BASED SNOW CLASSIFICATION

Because of the temporal variability of air tempera-
ture, error could be introduced in the ground-based
snow classification. This could result in different
snow conditions being related to SSM/I footprints of
similar Ty patterns. The SSM/I ANN snow classifier,
developed by Sun (1996), was employed to reclassi-
fy the SSM/I Ty, footprints. Only data of SSM/I foot-
prints classified as wet snow condition by both
ground-based and ANN-based classification methods
were used for the input/output data pairs. Thus, a sub-
set database of input/output data pairs was created.
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Figure 1. Example of a 5-2-1 backprop ANN.
ANN TOPOLOGY

A single-hidden-layer backprop ANN, as illustrat-
ed in Fig. 1, was created. It consisted of an input lay-
er of five nodes representing the inputs of five Tg's,
and an output layer of one node representing the de-
sired snow wetness parameter,

Given the number of nodes in each layer from in-
put to output as a sequence, the ANN topology was
represented as 5-N-1, where N is the number of hid-
den nodes. For the hidden layer, the number of nodes
was selected at 2, 5, 10, and 20. In addition, a bias
node, functioning similar to a constant in a regres-
sion, was connected to the nodes in the hidden and
output layers.

The error backpropagation training algorithm (Zun-
rada 1992} was applied to train the ANN. This me-
thod allows forward feeding node outputs (i.e., Xi's in
Fig. 1) through layers and backward propagating
mapping errors (i.e., E in Fig. 1) to adjust connection
weights between layers. The learning rate was set at
0.05, 0.10, and 0.20 for each ANN topology. The
momentum method (Rumelhart et al. 1986) was ap-
plied to accelerate the learning process by adding the
current weight adjustment with a proportion of the
previous weight change. The momentum term was
set at 0.90.

ANN TRAINING AND VALIDATION

As indicated by Masters (1993), the proportional
representation of classes in the entire training data
can have a profound influence on the ANN perform-
ance. Based on a prior study by Sun er al. (1996), the
frequency distributions of data elements may also be
important to the ANN training. Consequently, data
elements in the subset database were divided into se-
ven groups according to the frequency distributions
of snow wetness (Table 1). Based on the smallest

121

Table 1. Data elements selected for ANN training and

validation.

Range of Number of data elements
SROW Welness Entire Training  Validation
(% by volume) data set Data set data set

0-1 50 6 4
1-2 25 6 4
23 24 6 4
34 18 6 4
4-5 14 6 4
5-7 8 6 2
7-10 9 6 2
Total 148 42 24

number of data elements in the groups, six data ele-
ment were randomly selected from each snow wet-
ness range to form the training data set. The rationale
was to make the data sets as representative for the
whole data and as balanced in size for each group as
possible. From the remaining elements, a validation
data set was also created.

The activation function, f{net) in Fig. 1, applied to
the net input of nodes in the hidden and output layers
was logistic, which maps the net output into the range
between 0 and 1 (Zurada 1992). Accordingly, the in-
puts were scaled between 0 and 1 with respect toa T
range from 200 to 270 K. The desired outputs of
snow wetness were also scaled between 0 and 1 with
respect to a range from 0 to 10 % by volume.

The training process started by randomly initializ-
ing all connection weights in the ANN to the range
between -0.1 and 0.1. After each training epoch (i.e.,
the time for all the input/output pairs in the training
data set to be processed by the ANN), a root-mean-
squared (RMS) error was computed on the validation
data to examine the performance of the ANN. The
training epoch was repeated until a minimum RMS
error was reached.

ANN TESTING

Data of SSM/I Tg's from the DMSP-F11 satellite in
1990 sampled at a footprint with concurrent snow
wetness estimations during field work at Snowville,
Utah (Sun ez al. 1995) were used as the test data set
to evaluate the performances of the resulting ANNs.
Agreement between the ANN-estimated snow wet-
ness and ground-based values, in terms of correlation
coefficient (r), was measured for each ANN topology.

In addition, estimates of the best ANN (i.e., the




Table 2. Summary of the ANNs training and testing performances.

ANN Training results Testing results
Topology Learning rate Total epochs Minimum RMS r
5-2-1 0.05 1149 0.22398 0.539
5-2-1 0.10 558 0.22119 0.542
5-2-1 0.20 320 0.22250 0.533
5-5-1 0.05 1125 0.22519 0.536
5-5-1 0.10 581 0.22174 0.539
5-5-1 0.20 309 0.22241 0.528
5-10-1 0.05 1104 0.22536 0.525
5-10-1 0.10 597 0.22252 0.528
5-10-1 0.20 315 0.22237 0.516
5-20-1 0.05 997 0.22551 0.515
5-20-1 0.10 566 0.22280 0.509
5-20-1 0.20 337 0.22257 0.495
one with the largest r value) were compared to those 7
estimated by the existing SSM/I algorithm (Sun et al. 0540 ®
1995): 5 6 r=0:
o }
Woow = - 4.75 +339.53 x (TD)™! g5
- 6159.53 x (TD)™* 3‘4
+40112.00 x (TD)™* (2) §
b3
where TD = T19V -T37H. 2
B2 o
RESULTS AND DISCUSSION & ; - ®
Table 2 summarizes the training and testing perfor- 0
mance of each ANN topology at different learning ra- 0 1 2 3 4 5 6 7
tes. For each ANN, there was no evidence to show 7
that a lower or a higher learning rate ensures a better
ANN performance (i.¢., 2 smaller minimum RMS 8 r=0.048 ]
error). Overall, the best ANN (i.e., the 5-2-1 ANN g q
trained at learning rate of 0.10) was derived from a § 5 =
number of training runs at different learning rates by ES m @
trial and error. g4 =
In comparison, significant agreements were seen k'
between Eq.(2)-estimated and ground-based snow & 3
wetness values (r = 0.940 in Fig. 2-A) as well as be- B )
tween Eq.(2)-estimated and ANN-estimated values (r %
=(.848 in Fig. 2-B). Since Eq.(2) was developed for <,
a sparse-vegetated terrain, using a regression method e U=
based on the same data as those in the test data set, it 0
performed better. However, the ANN was learned 0 1 2 & 4 5 6 7
Eq.(2)-estimated (% by volume)

from a completely different data set, including data
from mountains and plains with different amounts of
vegetation cover. The correlation (r = 0.848) shown
in Fig. 2-B may imply that the backprop ANN ap-
proach has the potential to retrieve snow wetness
from SSM/I Ty, observations at different regions.
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Figure 2, Comparison of (4) ground-based versus
regression-model-estimated and (B) ANN-
estimated versus regression-model-estimated snow
wetness data from SSM/I T,'s in the test data set.
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Figure 3. Comparison between ground-based and
ANN-estimated smow wetness data (r = 0.702)
Jrom SSM/I Ty's in the fest data set with respect to
the regression line by Eq.(2).

Certain agreement (r = 0.702) was found between
ground-based and ANN-estimaied snow wetness data
(Fig. 3). However, relatively higher estimates by the
ANN with respect to the regression line were seen in
the wetness range over 4% by volume. This could be
due to the lack of representative data patterns over the
range of 4% (see Table 1) for ANN training, resulting
in a misinterpretation of the wetness in that range by
the ANN.

The application of Eq.(2) to snow wetness esti-
mation using the validation data set showed an over-
estimation in medium-vegetated SSM/I footprints
(Fig. 4-A). One possible explanation is that the depo-
larization effect of vegetation cover resulted in a
smaller T19V-T37H, which gave a higher estimate
of snow wefness in Eq.(2), causing a weak overall
correlation {r = 0.194). However, a better agreement
(r = 0.546) was seen in the use of the ANN approach
(Fig. 4-B). This finding confirms that a regression
model can be developed for a specific region and
should only be applied to areas with similar geo-
graphic features and vegetation cover (Sun et al.
1995).

CONCLUSIONS

This study has demonstrated a backprop ANN ap-
proach to find a mapping between SSM/I T, observa-
tions and ground-based snow wetness data. Results
showed that the ANN approximation may overcome
the limitations of the existing regression models in es-
timatining snow wetness from SSM/I data over varied
terrain with different amounts of vegetation cover,

Although the ANN has the capability to learn in-
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Figure 4. Comparison of (A) regression-model-
estimated versus ground-based and (B} ANN-
estimated versus ground-based snow wetness data
Jrom SSM/I Ty's in the validation data set.

put/output relations from noisy samples, a sufficient
number of representative data patterns should be
available during training to improve the ANN perfor-
mance, Further improvement is expected as more
representative input/output relations between SSM/I
observations and ground-based data over varied ter-
rain are established.
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