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ABSTRACT

An increasing number of high voltage transmission
lines are exposed to atmospheric icing in remote
northern regions. Instrumentation able to operate
unattended in this remote environment is
increasingly being designed in conjunction with
appropriate icing models to estimate transmission
line icing. Hydro-Québec has implemented such a
system (SYGIVRE) relying on the Mt. Bélair icing
site to collect icing data required to improve the
systern. Mt. Bélair offers a high voltage transmission
line instruniented with load cells besides icing
instrumentation. Measurements of average tempe-
rature, wind speed and direction, precipitation rate
and the number of icing rate meter (IRM) signals are
also recorded on the site with one hour periods. Icing
data have been collected between 1994 and 1998 and
constitufe the data base on which a model can be
developed to be used at other sites eventually.

This paper investigates two techniques, multiple-
variable linear regression and the neural network, to
develop icing models and estimate a cable icing rate
from the same set of hourly measurements. Results
show that the nevral network is a slightly more
accurate mode] even though the difference in
accuracy of the two models is small, However, the
design of an appropriate neural network which has a
more complicated structure usually requires more
time initially in comparison with the multiple
regression approach which has and advantage in its
simplicity.

Keywords :Atmospheric icing, neural networks,
multiple linear regression, transmission line icing,
ice accretion

1. INTRODUCTION

Atmospheric icing of structures is a relatively rare
metecrological phenomenon often occurring in remote
northern regions. Presently, it remains important to
develop both appropriate instrumentation and reliable
atmospheric icing models to be able to estimate icing
loads as accurately as possible before serious damage
can occur. Such models have to be developed to make
optimal use of the scarce icing data already available.

Many different icing models have been developed
to compute cable icing loads. These can be divided in
two main groups. The first kind of model is based on
physical or mathematical equations, attempting to
describe the physical process of an ice accretion
(Poots 1996). This approach has the advantage of
being independent of the icing site, but usually rely on
variables not easily measured, e.g. liquid water
content or droplet sizes.

Due to the difficulty in obtaining data and also due
to the inaccuracy of this data a second kind of models,
empirical models, have also been adopted to obtain
icing load estimate closer to measured values. The
simplest model of this kind can be obtained by using
multi-variable linear regression to relate
instrumentation readings to measured cable load
(McComber et al. 1995). Recently, neural networks
offer a new approach within the empirical model
family for modeling transmission line icing (Ohta et
al. 1996; Wakamatsu et al. 1993). It uses directly
measured data to teach or train the model, i.e. opti-
mize its parameters, to give the right answer when the
appropriate data is fed in, Neural networks are
emerging as a legitimate means of modeling such a
complex phenomenon as ice accretion. Furthermore,
in the case of prediction of transmission line icing,
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neural networks associated with appropriate
instrumentation provide a means of synthesizing a
virtual instrument to measure the icing load directly.
The data recorded by the various instruments can
then be interpreted as an icing rate on the
conductors.

Since both techniques have advantages and
disadvantages, this paper compares their respective
results using the same icing input data.

2. TYPES OF ATMOSPHERIC ICING
AFFECTING STRUCTURES

Three basic kinds of ice are formed by accretion in
the atmosphere: glaze, hard rime and soft rime.
Glaze is transparent and it has a density with respect
to water of approximately 0.9 (the density of pure
ice is (.917). Hard rime is white and sometimes
opaque, depending on the quantity of air trapped
inside the ice. Its density varies from 0.6 to 0.9. Soft
rime is white and opaque. It is feathery or granular in
appearance with a density less than 0.6. The density
will increase with increasing drop size, temperature,
wind speed and liquid water content.

Cloud or fog droplets have diameters smaller than
200 pm. Cloud droplet sizes measured experi-
mentally indicate that low level clouds, which can
affect a structure on a mountain summit, have
droplet sizes in the 1-45 pmrange. Consequently,
exposure to super-cooled clouds or fog will usually
result in soft rime. Freezing precipitations have
droplets larger than 200 um. The higher liquid water
content associated with the precipitations can
produce hard rime or even clear ice. The boundary
between in-cloud and freezing precipitation icing is
difficult to establish on a mountain icing site where
clouds and precipitations are often mixed and where
the icing obtained varies in density, covering the
range from soft to hard rime.

3. TRANSMISSION LINE ICING DATA

The icing data which is used as the data base for
the comparison of the two transmission line icing
models was obtained at the Mt Bélair icing site. This
test site is located at an altitude of 450 m, 25 km
northwest of Québec City and 9 km north of the
Québec Airport, in a corridor formed by the
Laurentian Valley. The main winds generally travel
northeast (along the axis of the St. Lawrence River)
and experience uplift when they pass over Mt.
Bélair. On Mt. Bélair summit in-cloud icing and
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freezing rain are relatively frequent from November
through April. This test site provides measurements
of several meteorological parameters, and records
mainly wind and ice loads directly on a live 315-kV
transmission line. As depicted in Fig.1, a load cell is
installed on the tower which supports the 315-kV line.
The site is equipped with two heated anemometers
located on the 315-kV line at 12 m and 10 m above
the ground and about 15 m away from the 315-kV
line.

Figure 1. Schematic description of the Mi. Bélair test
site.

Data have been continuously recorded starting in
November of 1994. However, initially some
meteorological parameters were not available doe to
instrumentation failures. For instance, the :
precipitation gauge did not work when first installed,
the anemometers were out of order part of the time
during some icing events. These anemometer
problems were probably related to icing from freezing
precipitation. Hydro-Québec’s site experienced 20
icing events caused by freezing rain or in-cloud icing
between the fall of 1994 and the spring of 1997. All
variables are dynamic and random so that averages are
taken and hourly recorded. The recorded data were
broken down in one hour periods to form the data
base necessary for the models. The hourly values for
each variable for all of the events give a total number
of 526 points. Three quarters (75%) of this data (393)
were used in developing the model and the remaining
quarter (25% or 133) were used to validate them.

The neural network and the linear regression
models make use of four instrument signals as inpyt:
temperature, wind velocity normal to the power line,
precipitation and IRM signals.




After testing a simpler network with four inputs:
temperature, precipitation rate, IRM (icing rate
meter) signals and normal wind speed, a ten (10)
input model was developed to take into account the
dynamic aspect of this process. The same four
parameters are used but values at previous time steps
are sirnultaneously taken as inputs. Temperatures,
IRM signals and precipitation rate are used at time
steps t, t-1 and t-2 giving nine of the inputs while
only the most recent wind speed is included. Wind
speed is treated differently because additional inputs
for this variable did not improve the results. A
comparison between the simpler four input network
and the ten input network has shown a significantly
better performance for the latter (Mccomber et al.
1998). The ten inputs, described in Table 1, are
therefore retained and used in the comparison with
muitiple linear regression that follows.

Table I. Description of the inputs

Input Symbol Description

i IRM, IRM signals at ¢
i IRM,, IRM signals at t-1
i IRM, , IRM signals at t-2
I P, Precipitation at t
i P, Precipitation at t-1
i P, Precipitation at -2
i; T, Temperature at t
Iy T, Temperature at t-1
iy T, Temperature at t-2
i v, Wind speed at t

The input data are normalized on a 0-1 scale by
dividing each positive variable by its maximum
range. For temperatures, positive values are first
obtained by the addition of an arbitrary constant. The
output or target is the hourly increasing in ice load,
dmy (kg/m.h). It is compared with the load measured
by a load cell on one of the six conductors on the
315 kV line. The hourly data are used to find the
icing rate, 8m; (kg/m.h) and the following expression
is then used to find the resulting ice mass as a
function of time.
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m;,, =m; +om, &t 1)

The above equation corresponds to a first order
numerical integration scheme, but the additional
inputs at previous time steps associated with their

_ optimized coefficients make Eq. (1} equivalent to a

higher order integration method.

4. THE NEURAL NETWORK MODEL

Neural Networks

Biologically inspired neural networks are finding
increased applications in modeling of complex
dynamical systems. The book by Amat and Yahiaoui
(19935) provides one of the many available
introductions to this field.

The basic elements of a neural network are
schematically shown in Fig. 2, which also describes
the network structure used for the icing model.
Several inputs are connected to the neurons (nodes or
processing elements that form a layer). In general
there can be more than one hidden layers, followed by
the output layer. The number of connections is higher
than the total number of nodes. Both numbers are
chosen based on the particular application and can be
arbitrarily large for complex tasks. Simply put the
multi-task job of each neurons is to evaluate each of
the input signals, to calculate the weighted sum of the
combined inputs, to compare that total to some
threshold Ievel, and finally to generate the output. The
various weights are the adaptive coefficients which
vary as the network learns to perform its assigned
tasks using the training data and making some inputs
are more important than others. The threshold or
activation function is generally nonlinear. The most
common one, used below, is the continuous
logsigmoid, or S-shaped, curve which approaches a
minimum (0 or -1) and & maximum (+1) value at the
asymptotes. If the sum of the weighted inputs is larger
than the threshold value, the neuron generates a signal
{(+1); otherwise a zero signal is fired. The neural
networks described in Fig. 2 operates in feedback
mode. This terminology refers to the direction of
information through the network. The self-learning
network updates its various parameters by comparing
its input to a desired output, thus requiring feedback
information relating to the effect of its control.

Complex systems for which dynamical equations
may not be known or may be too difficult to solve, can
be modeled using neural nets. One of their advantages
is their ability to approximate to any degree of
accuracy any measurable function: they are so-called
universal “approximators™ (Hornick et al. 1989; Chen




and Chen 1993). However, mathematical proofs on
the existence of an accurate representation do not
necessarily tell the designer which structure is the
right one. Then comes the problem of conver-gence
{Nordgren and Mecld 1993) of the neural networks
representation (has its parameters converged to the
real characteristics of the dynamical system?), and
the problems of asymptotic stability (is the neural
network able to bring the error to zero?)

Input Hidden Layer Qutput Layer
(7 haurons) (1 nauron}

%
%

AT vectorss
i
1 AT vectorsz

Figure 2. Example of a neural network

Some of the design characteristics of neural
networks as applied to an icing model were
addressed in a previous paper (McComber et al.
1998) the final choice of the structure of the network
is illustrated in Fig. 2. The neural network described
in the present paper is the best one developed to date
with the available data.

Neural network learning rule

The back-propagation learning rule is used to
train the network. It minimizes the sum of squared
errors (SSE) of the network by adjusting the weights
and biases using a non-linear optimization technique.
The delta vectors (derivatives of error) are calculated
for the output layer, and back-propagated through the
network to obtain the delta vector for the hidden
layer.

Weights and biases are adjusted, based on the
gradient descent technique, by moving them in the
opposite direction to the error gradient. A fast
technique of optimization using an approximation of
Newton’s method called the Levenberg-Marquardt’s
method was used for the present network.

The modification of the weights W, at each step
or epoch of this optimization technique is found by
the following:

AW:(JTJ+#I)—1 JTe (2)
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where J is the Jacobian matrix of the error deriva-
tives with respect to weights, i is a sclar and e stands
for the error vector. If p is very large, then Eq. (2)
approximates gradient descent and if it is small Eq. (2)
becomes the Gauss-Newton method, p is adjusted
during the processing.

Definition of the minimized network error

The definition of the sum of squared errors (SSE) is
the following:
in this equation Q is the number of test cases
(elements of each input vector = 393}, ¢ is the

]
SSE =3 et =3 00 —at0) )
k=1 k=1

target value and a the corresponding output of the
neural systern.

Neural network structure

The structure with one hidden layer of seven (7)
neurons, shown in Fig. 2, was obtained by trial and
error using the training and test data.

The number of neurons in the hidden layer can be
increased further. The error on the training data would
decrease but at the same time the error on the test data
increases. The seven (7) neurons of the hidden layer is
a compromise to obtain a reasonable error on the test
data. The comparison between the training and test
data will be presented in the results below.

Table 2 gives the weights and biases of the best
neural network obtained. W1 and B1 refer to the
weights and biases of the hidden layer. W2 and B2
refer to the output layer.

5. MULTIPLE-VARIABLE LINEAR
REGRESSION MODEL

Linear regression uses a linear equation to relate the
icing rate to the ten (10) input parameters, listed in
Table 1.

om, = B, + Biiy + Boiy + Byl + ... (4)

where i; are the inputs and [, are the linear coefficients
to be calculated. Each one hour period icing is
considered as a point of a n-point data set. This
technique was previously used by McComber et al.
(1993) to determine the icing rate from the number of
IRM signals.




Table 2. Weights and Biases of the neural networks
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“,i IRM IRM—I I RM:-z P I P 124 P 1.2 Tl Tr-I T:.z Vz
ny 18275 -14.65 -14.81 69162 -2.566 24462 0.1219 -1.738 -1815 6227
", 4.8717 -1.324 -0.244 19555 -4.022 -2.278 4.2054 0.5432 19203 0.10]
R, -1.48 27582 1.6703 -I3.14 85755 (0.5386 -27.67 85621 14914 1821
n, 40.079 29939 26817 33.838 -3327 2295 14718 -1508 -9.37 8.527
ns -1.816 5451 -116 19.267 4.127¢ 13059 -3.257 Q.08 0.2757  1.943
Hg 8475  -2.061  2.629 -1.272 0 02248 .14.34  -8.78 -2.002 -3.812 686
n, -11.3 -5.439  -3.106  -2326 -5234 -0.874 54633 -0.694 -5548 8423
Table 2 (continued) The multiple regression coefficients minimizing
the sum of squared errors SSE are given in Table 3.
BI WZ B2
n, -11.3257 0.7284 0.496 Table 3. Multiple-variable linear regression
coefficients
n, 12.5896 -2.4962
n, 4.6652 -3.223] Coefficients Value Corresponding
variable
n, -9.8602 1.201
By 0.011955
ns -3.229 -6.709
I 0.006905 IRM,
ng -5.003 7.9183
Ji -0.002712 IRM,,
R, -2.5737 -8.4053
/A -0.003731 IRM,,
) i B -0.000394 P,
The matrix equivalent of Eq. (4) for the n points
isY=X§, where Y is the column vector of the n Bs -0.0001 P,
icing rates, dmy, , and X is a n x /I matrix where a
row corresponding to one of the n points is formed Bs 0.003173 P
of 1 in the first column followed by 10 input
* variables [i; i,... i),). Then the vector of the by -0.001385 L
eleven coefficient f§ is found by the solution of the Be 0.005255 T,
linear matrix equation (Hines and Montgomery
1980): Bs -0.000171 T,
5
X'X8=X"Y. ©) B 0.000788 v,
The sum of squared errors SSE is found from:
SSE=Y'X-8'X"Y (6)




6. RESULTS OF THE COMPARISON

Results are presented in two parts. The first part is
a comparison of the performance of the two models
in predicting the icing rate on the complete set of
test data. The second part of the comparison shows
the application of the two models to the calculation
of the total load for three (3) complete icing events.

6.1 Comparison of the model performance on the
test data.

The data available to develop the two models were
randomly divided in two groups: three quarters of
the data (393) cases were used for the training. The
main characteristics of the two models were
established with these data by reducing to the
maximum the error (SSE).

| Sse=0.192 Linear Regression
015 Avg ar. =0.022
= 04 -
=
E.
g 0.05
B
S0
2
o
S 008
g
;=]
2
[ XY S S—
_Sse=0aas o NeurslNetwork o ......]
. Avg err. =0.019
LT (E S T It Y T e pa de sy ) rcd D) e TV T H T T 2 L A B et e st O
S0 60 50 120 150 180 210 @40 Zr0 300 330 360 390
Number of data

Figure 3 Comparison of the absolute value of the
error in icing rate estimation for the training data

The resulting neural network model and multiple-
variable regression were then used to compute the
hourly icing rate (kg/m.h) and compared with the
measured icing rate. The difference in icing rate 1s
shown in Fig. 3 for each training case.

To facilitate the comparison, the absolute error is
compared by putting above the axis the neural
network results and below the axis the linear
regression results. The remaining data (25% or 133
cases) were put aside in order to evaluate the
resulting neural network with the new data (Fig. 4).
The same basis for comparison was applied for these
test cases.

Figures 3 and 4 show that the error is quite
sirnilar with both approaches, since the larger or
smaller errors occur for the same hourly data. As
would be expected, the sum of squared errors is

somewhat smaller for the training data shown in Fig.
3. However, whereas the neural networks is more
accurate (a smaller SSE) on the training data the
opposite is true for the test data. This is consistent
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Figure 4. Comparison of the error in the icing
rate estimation for the rest data

with other tests done on the neural network in that
increasing the accuracy of the training data (e.g. by
increasing the number of neurons}), decreases the
accuracy on the test data.

The difference in estimated and measured loads
displayed in Fig. 3 for the training data is
approximately 0.025 kg/m.h for most of the test
points. Only a small number of cases yield a larger
difference. Usually, a larger error is obtained when
the test data is out of the training range for some
input variables. In these specific cases, the measured
variables could be reexamined in order to determine
possible causes of this larger sum of squared errors.
The differences obtained in Fig. 4 on the test data are
on the average slightly larger. However, Lest cases
are a good indication that the two models will also
be able to perform an icing rate estimation on new
icing data with the same accuracy as long as the
characteristics of the icing site, instrumentation and
transmission line are relatively similar.

6.2 Model simulation on specific icing events

The two models are compared by making a
simulation of three (3) complete icing events
comparing with measurements recorded. The first
two events chosen are the 19" January 1998 event
shown in Fig. 5 and the 25" December 1997 shown
in Fig. 6. The icing data used in these two cases were
not part of the original set of data, so that it is a good
indication of the performance of the models on new
data. The final errors in Fig. 5 are -19.3% for the




neural network and -26.7% for the linear regression.
For Figs 6 the corresponding numbers are -8.9% and
26.9%. Hence, in both cases the simulation done
with the neural network is better.
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Figure 5. Comparison of the total ice load for the
19th January 1998 event
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Figure 6. Comparison of the total ice load for the 25th
December 1997 event

The third event, 7" December 1996 shown in Fig.
7 was chosen because of its duration and impor-
tance. In this case the errors on the end values are
-33.4% for the neural network and -15.5% for the
linear regression. Although the end value is better
with the linear regression, a closer at Fig. 7 shows
that the neural network is much better for the first 40
hours, but after that time, corresponding to the end
of precipitation, both models underestimate the rate
so that for the linear regression the smaller negative
difference comes for a cancellation of error since it
overestimated the rate in the first 40 hours,

Overall, the neural network is slightly better. For
the first two cases, Fig. 5 and Fig. 6, the end values
are better for the neural network model. For the third
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Figure 7. Comparison of the total ice load for the
7th December 1996 event

case (Fig. 7), the smaller negative error at the end of
69 h is a compensation for a larger positive error
earlier at 40 h.

7. DISCUSSION

The linear regression coefficients give a good idea
of the relative sensitivity of the different inputs
(Table 3). Since the ten inputs were normalized, the
magnitude of the coefficients reflects the sensitivity
of the output to each input variable . Wind speed at
time t has a smaller coefficient. For temperature and
for the number of IRM signals, the coefficients, B at
t, are larger than the ones at t-1 and t-2. Precipitation
is an exception with a smaller sensitivity for the time
t. This particularity can be explained by the fact that
precipitation corresponds to freezing rain whereas
icing occurs also without precipitation for in-cloud
icing. In-cloud icing is probably the source of a
significant error of the models. In the two examples
presented where measured icing loads continue to
increase at a smaller rate towards the end of the
event, a verification of the original data has
confirmed that this behavior was associated with very
small or no precipitation recorded.

The input data was initially randomly divided in
two groups for training and testing of the models.
This random selection prevents any bias in the input
data. Also, since the number of points in the data
base necessary for the network training increases
both with the number of input variables and with the
complexity of the approximated phenomenon,
additional data provided by new icing events is
always useful and will certainly improve the network
performance.

With neural networks, multiple-variable regression
or any other artificiai intelligence techniques the




parameters are optimized for the data measured and
the instrumentation. Since the usefulness of such a
systemn lies in its use in as many different locations
and condition settings as possible, it would be
advantageous to standardize the instrumentation so
that data collected on different icing sites could all
be combined with the training data. Expert systems
have the advantage of being well adapted to the data
on which the training process is based. For example,
if one of the instruments makes a systematic error in
the parameter it measures the network will integrate
this error and yield nevertheless an accurate icing
rate. For example, the precipitation gauge might
have such a systematic error in measuring
precipitation rate at sub-freezing temperatures. The
disadvantage of this characteristic is that a system
optimized for a given data set is not automatically
accurate on other sites not equipped with sirnilar
instrumentation.

Neural networks have the characteristic that, after
reaching a certain level of accuracy, as they become
more accurate on the training data they tend to
become less accurate on the test or validation data.
This characteristic probably applies to different
icing sites. Making the model too accurate on the
Mt. Bélair data might makes it less accurate in other
locations and for other instrumentation.

8. CONCLUSIONS

In this paper, a neural network technique was
compared with a multiple-variable linear regression
model for determining icing loads on transmission
lines using the same icing data inputs collected on
the icing site of Mt. Bélair. The models use four
parameters as inputs: temperature, precipitation rate,
number of IRM signals and normal wind speed. The
data base is obtained from measurements from
twenty in-cloud icing events during the 1994-1997
period and divided into one hour periods of icing to
provide the experimental icing rate data base. The
target data is the icing rate as measured icing on a
35 mm cable of a 315 kV transmission line.

Both models had ten (10) variables as inputs using
measurements of temperature, precipitation rate and
Icing Rate Meter (IRM) signals at previous time
steps. This number of inputs was shown to be more
accurate probably by taking into account the
dynamic characteristics of the phenomenon

The neural network with the best performance had
only one hidden Iayer of seven neurons. One hidden
layer of neurons was retained with an optimal
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number of six neurons. The activation or output
function of each neuron was a logsigmoid function.

Both models were optimized using the same set of
input data by finding the minimum of the sum of the
squared errors (SSE). The two types of models were
compared both with the training and validation data.
For the training data the neural network yielded a
smaller sum of squared errors whereas for the test
data the opposite was true. The comparison of total
icing loads estimated for complete icing events gave a
small advantage to the neural network model.

The parameters of each model were determined by
optimization. The procedure for the linear multi
variable regression model is straightforward and
consists in the solution of a single matrix eguation.
However, the neural network model requires a non-
linear optimization procedure. The solution is
obtained by an iterative gradient method which is
more complex since it requires initialization of its
coefficients and does not always converge to the
same optimal parameters.

Both methods have a common advantage of
adapting to new data as they become available, the
training can be made continnously. Neural networks
offer the advantage of flexibility associated with its
complex structure and non linear characteristics. But
this is balanced by the difficulty in initializing the
system and attaining convergence. Multiple-variable
tinear regression has the advantage of simplicity and
can be used as a first approximation and as a
benchmark when designing a better neural network.
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