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Determining the Snow Water Equivalent of
Shallow Prairie Snowcovers
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ABSTRACT

This paper describes the results of a study of the
statistical properties of the depth, density and water
equivalent of shallow seasonal snowcovers and their
application to modeling the melt of these
SDOWCOVers.

Simulations of snow melt demonstrate that the
coefficient of variation of the water equivalent
(CVswr), affects the rate of snowcover depletion.
Because the spatial distribution of depth within
prairie snowcovers is fractal, the standard deviation
of depth determined from equally-spaced
measurements taken along transects, increases with
an increase in the number of samples. The
implications of this finding for snow surveys and
snow melt models are discussed.

It is demonstrated that the depth and density of
shallow prairie snowcovers are largely independent.
This allows the use of regression equations to
determine the mean snow water equivalent from the
mean depth and the mean density. Similarly, CVgyg
can be determined from the coefficient of variation of
snow depth.
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INTRODUCTION

The determination of the mean and standard
deviation of water equivalent of a snowcover by in-situ

sampling usuaily requires measurements of snow depth
and density. Measmementofsnowdepthisrelaﬁvely
simple, requiring only a ruled depth gange.
Mmsurementofsnowdensityisﬁmeoonsunﬁng, and
generally done gravimetrically.

Researchers have demonstrated that it is the
frequency distribution of snowcover water equivalent
within a region that is primarily responsible for the
sigmoidal shape of the snowcover depletion curve
during ablation (Martinec, 1980; Shook et al., 1993).
The distribution of water equivalent may be
characterised by its coefficient of variation (CVswp) i,
the standard deviation divided by the mean. Variation in
CVswg affects the timing and rates of melt, runoff,
infiltration and streamflow,

The effects of varying CVsyg of a snowcover on the
shape of the arcai-depietion curve due to melting are
demonstrated in Fig. 1. These simulations were
produced by the program SSAS (Simplified Snow
Ablation Simulation, Shook et al., 1993) using
snowcovers with a mean water equivalent of 130 mm
and CVsyp-values of 0.3, 0.35, 0.4 and 0.5. These
data show that, during the interval when most of the
snowcover ablates (e.g. 80% — snow-free), the rate of
depletion of areal snow cover decreases with increasing
CVswe. This is expected because the smaller the
standard deviation, the more peaked the frequency
distribution of the water equivalent, which results in
largearwsbeoomingbamoverananowrangeof
depths as snow melts,
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Measured Snow Depths

To test the applicability of Eq. 1 to a snowcover,
snow depths were measured on several transecis on a
slightly undulating fallow ficld near Saskatoon, SK
(Lat 52° 8'N, Long, 106° 30' W) on Feb. 15, 1994.
Three large transects of depths were completed: (a)
South-North (389 values), (b) North-South (364
values), {c) East-West (210 values). All depths were
collected with a sampling interval of approximately
one metre, using a depth rod with a precision of 1
cm,

A large-scale random set of snow depths was
also collected. The data were collected from five
irregularly-scattered sites within the fallow field that
were spaced several hundred metres apart. Depth
measurements were taken randomly about each site.
The purpose for collecting these data was to test the
sensitivity of Eq. (1) to the mode of sampling, not to
test a method of random sampling.

Analysis of Snow Depths

The means and standard deviations for the
various surveys are listed in Table 1. They show that
there is considerable variation in the mean and
standard deviation among the sets.

Table 1. Snow Depth Frequency Distributions.
Fallow Field, Saskatoon, Feb. 15, 1994,

Sample Set | Samples | Mean | Std. Dev. | Range
(cm) | (cm) | (em)
North-South] 363 222 214 1—100
South-Northj] 388 223 11.8 0—>58
East-West 210 17.8 15.3 3—7
|Random 49 342 2238 0—90

The data sets were sub-sampled, in the same
manner used with the synthetic random data, to -
determine the relationship between standard
deviation and sample size. Fig. 3 shows the
relationships for the various surveys. The plot of the
randomly-sampled data in Fig. 3 shows the standard
deviation to be independent of sample size (H = 0),
This indicates that sampling was truly random with
respect to the variation in snow depth

Unlike the independence of the standard
deviation on sample size demonstrated by random
samples, the standard deviation of depth of samples
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Figure 3. Standard deviations of snow depth as a

function of sample size. Fallow field, Saskatoon,
Feb. 15, 1994,

collected along a transect is affected by the sample
size. In each case, the standard deviation appears to
be a power function of the sample size, as predicted
by Eq. 1, for fewer than 100 samples. At sample
sizes between 50 and 100, the curves appear to
flatten or, in the case of the East-West transect,
reverse slope.

The flattening of the curves suggests an upper
limit to the fractal distribution of snow depth. This is
not unexpected. Natural phenomena that behave as
fractals invariably do so over a restricted range of
scales. At some large or small characteristic length
the phenomena will change from fractal to random
or deterministic behavior. As the data were collected
at 1 m intervals, a characteristic length appears to
exist between 50 and 100 m,

The landscape does appear to influence the
large-scale variability of snow depth. The wide
variability of the means and standard deviations of
the data sets (see Table 1) suggests that the values in
each set are not representative of those of the entire
snowcover. Insufficient sampling was done to
incorporate the larger-scale variability of the
snowpack. Further research will be required to
determine the behavior of snow depth at larger
scales.

It was considered that the apparent
characteristic length could be an artifact of the
method of sampling (all values were collected at 1 m
intervals) or of the landform/landuse (all values were
collected within a single field) rather than an
inherent property of snow. To test: {a) the influence
of landform and landuse on scaling and (b) the
influence of measurement scale, depth transects were



Snowcover

0 10 20 30
Simulation Day

Figure 1. Snowcover depletion curves from four
runs of SSAS applied to snowcovers having a
mean water equivalent of 130 mm and CVgyp-
values of 0.3, 0.35, 0.4 and 0.5,

SNOWCOVER SAMPLING

To acquire representative statistics of the depth
and water equivalent of a prairie snowcover, the
observations must be obtained by random sampling.
Often it has been assumed that the spatial variability
of snow depth and water equivalent is random at
small (micro) scales. Therefore, samples collected
along transects should show random variation,
However, measurements at small scales (on the order
of a few hundred metres), on a variety of prairie
landscapes, have shown the spatial distribution of
snow depth to be fractal (Shook et al., 1993).

Fractal geometry is a new field of mathematics,
developed by Benoit Mandelbrot (Mandelbrot, 1983).
Fractal objects have no characteristic scale and are
rough in appearance. Under increasing
magnification, the degree of roughness stays
constant. Although fractals are a mathematical
concept, many natiral objects have been shown to
behave statistically as fractals over a wide range of
scales. The fundamental parameter that identifics
and quantifies a fractal object is D, the fractal
dimension. Conventional Euclidean objects have
dimensions of 0 (points), 1 (lines), 2 (areas) or 3
(volumes). For fractal objects, D may be non-integer.
For a further discussion of fractal geometry, the
reader is referred to Turcotte (1992).

Natural data sets can also display fractal
properties. A fractal data serics displays positive
autocorrelation, that is, the value at a point is similar
to values measured at nearby adjacent points. For a
fractal series sampled at even increments,
autocorrelation causes the measured standard
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deviation to be a power function of the sample size
(Turcotte, 1992), i.e.,

s(T)~T%, )
where:
s = standard deviation of data,
T = samplesize,
H = Hausdorff measure (constant) = 2-D.

According to Eq. 1, the value of H for a set of
experimental data may be determined from the slope
of the best-fit line of a logarithmic plot of standard
deviation versus sample size. If the data are
randomly-distributed, then H=0, and the standard
deviation is independent of sample size. This is
shown in Fig, 2, which was derived from a set of
1000 randomly-generated valnes. The data were
sampled sequentially. For example, for the sample
size of ten, the standard deviation of the first ten
samples was calculated. The sampling point was
then moved along one position and the standard
deviation of the next ten values was calculated. This
process was repeated until all data were used. The
standard deviations were used to caiculate 2 mean
value for the sample size. Then the sample size was
changed and the procedure repeated. This method of
averaging ensured that any systematic variation in
the data did not influence the calculation of the
standard deviation,
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Figure 2. Standard deviation versus sample size
for random synthetic data.

Measured Snow Depths

To test the applicability of Eq. 1 to a snowcover,
depths were measured on transects on a slightly




undulating fallow ficld near Saskatoon, SK (Lat 52°
8'N, Long. 106° 30' W) on Feb. 15, 1994. Three
large transects were completed: (a) South-North (389
values), (b) North-South (364 values), (c) East-West
(210 values). All depths were collected with a
sampling interval of approximately one metre, using
a depth rod with a precision of 1 cm.

Also, a large-scale set of snow-depth data was
collected by randomly-sampling within five
irregularly-scattered sites that were spaced several
hundred metres apart in the fallow field. The
purpose of these data was to test the sensitivity of
Egq. (1) to the mode of sampling, nof to test a method
of random sampling.

Analysis of Snow Depths

The mean and siandard deviation of depih for
the various surveys are listed in Table 1. They show
considerable variation in magnitude among the sets.

Table 1. Mean and Standard Deviation of Snow
Depth Monitored on a Fallow Field, Saskatoon,
- Feb. 15, 1994,

Sample Set | Samples | Mean | Std. Dev, | Range
e | (em) | (em)
[North-South| 363 222 14 1-—100
South-North|] 388 223 11.8 0—58
[East-West 210 17.8 15.3 37
|Random 49 342 228 0—90

Each data set was sub-sampied, in the same
manner used with the synthetic random data
{(described above) to determine the association
between standard deviation and sample size.

Figure 3 graphs these parameters for the various
surveys. The plot of the randomly-sampled data
shows the standard deviation to be independent of
sample size (H = 0). This indicates that sampling
was random with respect to the variation in snow
depth. For samples collected along a transect, the
standard deviation appears to be a power function of
the sample size, as predicted by Eq. I, for fewer than
100 samples. At sample sizes between 50 and 100,
the curves appear o flatten or, in the case of the
East-West transect, reverse slope. It should be noted
that the larger the sample size, the smaller the
number of independent samples.

92

100 4

5%

g o 00 eacaed® *
E 10 st
8 g M

o o Random sampling
g’ 2 ] w A East-West transect
=] & North-South transect

] O South-North transect
1 10 100 1000

Sample Size

Figure 3. Standard deviation of snow depth as a
function of sample size, Fallow field, Saskatoon,
Feb. 15, 1994,

Natural phenomcena that behave as fiacials
invariably do so over a restricted range of scales. At
some length a phenomenon changes from fractal to
random or deterministic behavior. The flattening of
the curves suggests an upper limit to the fractal
distribution of snow depth and the existence of a
characteristic length for a prairie snowcover. As the
data were collected at 1-m intervals, it appears that
the characteristic length is of the order of 56 to
100 m.

It was considered that the apparent
characteristic length could be an artifact of the
method of sampling (all values were collected at 1-m
intervals) or of the landform/landuse (all values were
collected within a single field) rather than an
inherent property of snow. To test: (a) the influence
of landform and landuse on scaling and (b) the
influence of measurement scale, depth transects were
conducted on an essentially-flat stubble ficld located
approximately 1.5 ki from the fallow field.
Measurements were taken at spacings of 10 cm and
1 m (see Table 2). The variation in standard
deviation with sample length (total length of sample
sub-set) is shown in Fig. 4. These data show the
standard deviation increasing initially as a power-
law with sample length. At some distance between
10 and 100 m the curves flatten. On the basis of the
similarity among the data sets it is concluded that:
(a) the smaller number of independent data sub-sets
at larger sample lengths is not responsible for the
characteristic lengih and (b) the characteristic length
is not an artifact of sample spacing. Likewise, the
similarity of the associations between standard
deviation and sampie length for fallow (Fig. 3) and
stubble (Fig. 4) supports the existence of a
characteristic length as an inherent property of snow.



Table 2. Snow Depth Samples. Stubble Field,

Saskatoon, Feb. 28, 1994,
Sampling Sample Samples
Direction Spacing
(m)
SE-NW 0.1 411
NE-SW 1 581
NW-SE 1 1204
10 ;
BT
TS
55 - |
=& i 0.1 m {Stubble SE-NW)
53 4 1 m(Stubble NE-SW)
- © 1 m(Stubble NA-SE)
01 T
0.1 1 10 100 1000 10000

Sample Length {m)

Figure 4. Standard deviation of snow depth as a
function of sample length. Stubble field,
Saskatoon, Feb. 28, 1994,

The presence of the characteristic length has
important implications for sampling and modeling
prairie snow covers. When sampling a prairie
snowcover, the transect length must be greater than
the characteristic length to obtain a random sample
as use of a shorter transect will cause the standard
deviation of depth to be under-estimated.

The patchiness of partially-ablated snowcovers
is a function of the frequency distribution and the
fractal spatial distribution of water equivalent. As
the patchiness governs the melt rate it is necessary to
reproduce it, and therefore to reproduce the fractal
distribution of depth, in a distributed model of the
ablation of a prairie snowcover. For a mode! to
incorporate the fine-scale (fractal) variability of a
snowcover, its minimum scale must be smaller than
the characteristic length. Use of a larger scale for
model elements will result in 2 model snowcover
having random distribution of depth, causing error
in the melt simulation.

Measurement of Mean SWE

Because the density of snow in a given area
generally varies less than its depth, fewer density
measurements are needed to establish the mean snow
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water equivalent (SWE). It is known that SWE is
related to the mean density (p ) and mean depth (D),
for a single set of measurements, by the relation
(Stephen, 1976):

SWE =001(pD+C), @)

in whick SWE is in mm when p is in kg/m?, D is
in cm and C is the covariance of snow depth and
density. For prairic snowcovers, C tends to be very
small becanse of the poor association between depth and
density. This is shown in Fig. 5, in which snow density
is plotted against depth for approximately 2,400
measurements taken on a variety of landscapes in
Saskatchewan. These values were generally collected
near the time of peak accumulation and prior to the
occurrence of significant melting. For snow depths less
than 60 cm, there is poor association between density
and depth (2 = 0.008). For depths greater than 60 cm
the association is stronger (= 0.19).

The division of snow depths at 60 cm was
determined by plotting the mean snow density at 5-cm
intervals of depth against depth. The curve showed an
apparent change in slope at approximately 60 cm.
Analyses have shown that any depth between 50 and
70 cm could be used as the dividing point and that the
results obtained are similar to those obtained from
dividing the data at 60 cm.
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Figure 5. Density versus depth for Saskatchewan

SNOwWCovers.

If the covariance of depth and density is small,
then it is possible to apply Eq. 2 to groups of depth
and SWE values. This would allow the estimation of
SWE from D, and reduces the data-gathering
requirements.

Figure 6 shows the association between measyred

values of SWE and D for prairie spowcovers having a
mean depth less than 60 cm.
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Figure 6, Mean water equivalent versus mean
depth for snowcovers having a mean depth less
than 60 cm. Data collected at various
Saskatchewan locations, 1974-1980.

The best-fit linear regression is;
SWE = 2.39 D + 2.05, &)

where ¥ = 0.85, n = 43, The slope corresponds to p =
239 kg/ny’, which is very close to the measured average
density of 246 kg/m®. The intercept (2.05) typifics the
low covariance. ‘

When the process is repeated for snowcovers
having a mean depth greater than 60 cm (see Fig. 7),
the parameters of the linear relationship change, The
fitted line has the eguation:

SWE = 341D - 4555, @

where ¥ =0.93, n= 14.

The slopes and intercepts of the regression
equations (Eqs. 3 and 4) were compared. The
differences between the slopes was not significant at the
5 % level. Conversely, the intercepts were significantly
different at the 5 % lewel.

The large negative value for the intercept in
Eq. 4 indicates the dependence of snow density on
depth. If density increases with depth, and sets of
data are selected randomly, a plot of their
SWE versus D must have a negative intercept
because the covariance between depth and density
(see Eq. 1) will increase with depth, Tabler et al.
(1990) also found an exponential relationship
between integrated snow density and depth for
accumulations of wind transported snow. Because
the covariance between depth and density is
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unknown, Eq. 1 cannot be used to predict SWE
when D is greater than 60 cm.
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Figure 7. Mean water equivalent versus mean
depths for snowcovers having a mean depth equal
to or greater than 60 cm, Data collected at various
Saskatchewan locations, 1974-1980.

Determining Standard Deviation of Snow Water
Equivalent

The coefficient of variation of the water equivalent
(CVswg), which strongly influences the rate of ablation
of a snowcover, is difficult to measure directly as it
requires measurerments of snow depth and density. A
method of estimating CVgwg from snow depth data
would reduce the data requirements of operational
modelling, Figure 8 indicates a positive linear
relationship between the coefficient of variation of snow
depth (CVp) and CVgyg. A linear regression fitied to
the data has a slope of 1.03, an intercept of 0.088, and a
coefficient of determination, = 0.89. The existence of
the intercept may be questioned as the line should pass
through the origin. This is proven below.

The slope of the best-fit line (S) of a plot of snow
water equivalent (SWE) versus D is related to the
standard deviations of the SWE (sgwg) and the snow
depth (sp) by the expression (Snedecor, 1959):

S =S ®
So

in which r is the correlation coefficient. Rearranging the
terms, and combining with Eq, 2, yields:

$s,

CVsz = L .
ﬂ.Olip]) + Ci

If CVp =0; sp =0 and CVewg = 0. Therefore it is
concluded that the intercept is probably an artifact of the
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limited number of points used for the analysis. If the
least squares best-fit line is re-calculated to pass through
the origin, the new slope is 1.31 and the value of I
decreases 10 0.81.
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Figure 8. Coefficient of variation of snowcover
water equivalent (CVswg) versus the coefficient of
variation of snow depth (CVp). Miscellaneous
Saskatchewan data 1974-1993.

CONCLUSIONS

The frequency distributions of the water
equivalent within snowcovers are required for
modeling snow melt. The effects of variation in the
coefficient of variation of the water equivalent
(CVswg), which is a parameter of the frequency
distribution, on the depletion of snow-covered area
during ablation are demonstrated. It is shown that
the rate of depletion decreases with increasing
CVswe, because of the increasing peakedness of the
distribution.

The effects of the fractal spatial distribution of
snow on the standard deviation of snow depth
measured along a transect is described. For transects
less than 100 m in length the standard deviation
depends on the number of samples. At some length
between 10 and 100 m, snow depths tend to behave
as randomly-distributed data. On the basis of these
findings, it is recommended that if snow depths are
collected along a transect (rather than by random
sampling) it should be at least 100 m in length or the
estimate of the standard deviation will be biased.

The transition of depth from fractal to random
distribution suggests the existence of a characteristic
length. For a model to reproduce the fine-scale
{fractal) variability of a prairie snowcover, its
minimum scale must be less than the characteristic
length. Use of a larger scale for model elements will
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result in the snowcover having a random distribution
of depth.

In prairie environments the depth and density of
snow are largely independent, and exhibit low
covariance. Based on this finding, simple linear
regression equations are provided to estimate the
mean of the SWE from the means of snow depths
and densities and to estimate the CV of the SWE
from the CV of snow depths.
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