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ABSTRACT 

The goal of this study is to develop an algorithm to estimate Snow Water Equivalent (SWE) in 
Great Lakes area based on a three-year of SSM/I dataset along with corresponding ground truth 
data. The study area is located between latitudes 41N and 49N and longitudes 87W and 98W. The 
area is covered by 28*35 SSM/I EASE-Grid pixels with spatial resolution of 25km. Nineteen test 
sites were selected based on seasonal average snow depth, land cover type. Each of the sites 
covers an area of 25km*25km with minimum of one snow reporting station inside. Two types of 
ground truth data were used: 1) point-based snow depth observations from NCDC; 2) grid based 
SNODAS-SWE dataset, produced by NOHRSC. To account for land cover variation in a 
quantitative way a NDVI was used. To do the analysis, three scattering signatures of GTVN 
(19V–37V), GTH (19H–37H), and SSI (22V–85V) were derived. The analysis shows that at lower 
latitudes of the study area there is no correlation between GTH and GTVN versus snow depth. On 
the other hand SSI shows an average correlation of 75 percent with snow depth in lower latitudes 
which makes it suitable for shallow snow identification. In the model development a non-linear 
algorithm was defined to estimate SWE using SSM/I signatures along with the NDVI values of the 
pixels. The results show up to 60 percent correlation between the estimated SWE and ground truth 
SWE. The results showed that the new algorithm improved the SWE estimation by more than 20 
percent for specific test sites. 

Keywords: Microwave SSM/I, NDVI, SWE. 

INTRODUCTION 

Knowing the seasonal variation of snowcover and snowpack properties is of critical importance 
for an effective management of water resources. Satellites operating in the optical wavelength 
have monitored snowcover throughout the Northern Hemisphere for more than thirty years. These 
sensors can detect snowcover during daylight and cloud-free conditions. In contrast to visible 
bands, remote measurements operation in microwave region offers the potential of monitoring the 
snowpack water equivalent and wetness due to penetrating capability of the radiation at these 
frequencies. Hallikainen et al. (1984) introduced an algorithm for estimating SWE using passive 
microwave Scanning Multi-channel Microwave Radiometer (SMMR) data. The process involved 
the subtraction of a fall image from a winter image in vertical polarization of 18 and 37 GHz 
frequencies. The difference, ΔT, was used to define linear relationships between ΔT and SWE. 
Aschbacher (1989) proposed an SPT algorithm for estimating snow depth and snow water 
equivalent that was based on a combination of SSM/I channels. Further studies revealed that since 
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land cover is not considered as part of equation in the algorithm, the model is not very accurate. 
Chang et al. (1987) related the difference between the SMMR brightness temperatures in 37 GHz 
and 18 GHz channels to derive snow depth – brightness temperature relationship for a uniform 
snow field, SD=1.59 [Tb 18H–Tb37H]. Goodison and Walker (1995) introduced another 
algorithm to estimate SWE using SSM/I channels. They used vertical gradient (GTV) between 
brightness temperatures at 37 GHz and 19 GHz and defined a linear relationship between SWE and 
GTV. This gradient value is obtained by subtracting the brightness temperature, Tb at frequencies 
of 37 and 19 GHz and dividing it by a constant (Goodison, Walker 1995). Grody (1996) 
developed an image classification algorithm to generate global snow map from Special Sensor 
Microwave Imager (SSM/I) data. The algorithm employs a decision tree technique and uses 
thresholds to filter out precipitation, warm desert, cold desert and frozen surfaces. De Seve et al. 
(1997) applied two previously developed models by Hallikainen and Goodison-Walker to James 
Bay area in La Grande River watershed, Quebec, Canada to estimate SWE using SSM/I images. 
The investigations revealed that both models tend to underestimate SWE especially when SWE 
was more than 200mm. A modified version of Goodison-Walker algorithm was suggested. Foster 
et al. (1999) have modeled various snow crystals shapes in different sizes and concluded that the 
shape of the crystal has little effect on the scattering in microwave. A physically based snow 
emission model was introduced by Pulliainen et al. (1999) of Helsinki University of technology 
(HUT snow emission model). The model assumes that scattering of the microwave radiation 
inside the medium is mostly in forward direction. The scattering coefficient is weighted by an 
empirical factor. The brightness temperature is computed by solving the radiative transfer 
equation. A boreal forest canopy model proposed by Kurvonen et al. (1994) was used to account 
for the influence of vegetation on the brightness temperature. Atmospheric effects were neglected 
and the snow grain size was allowed to vary in the model. Derksen (2004) carried out a detailed 
evaluation of SWE and SCE derived using SMMR and SSM/I data over the south Central part of 
Canada. The new technique to infer SWE from satellite data incorporated different algorithms, 
open environments, deciduous, coniferous, and spars forest cover and calculated SWE as weighted 
average of all four estimates. SWE = FDSWED + FC SWEC + FS SWES + FOSWEO, where (F) is the 
fraction of each land cover type within a pixel, D, C, S, and O correspondingly represent 
deciduous forest, coniferous forest, S sparse forest, and O open prairie environments. Passive 
microwave dataset and in situ SWE observation were compared and showed that the SMMR 
brightness temperature adjustments are required to produce SWE that would fit SWE inferred 
from SSM/I. SWE and SCE time series for December through March for a period of 88 years were 
analyzed to examined the variability of SWE and SCE (Derksen, 2004). Tedesco et al. (2004) 
proposed an Artificial Neural Network (ANN) technique for the retrieval of SWE from SSM/I 
data. They have used a multilayer perceptron (MLP) with various inputs to estimate SWE. First, 
brightness temperatures simulated by means of HUT snow estimation model were employed. The 
second approach made use of a subset of measured values. The input layer consists of four 
neurons, made up of 19 and 37 GHz vertical and horizontal brightness temperatures and the output 
was snow parameters. The results showed higher performance of ANN model compare to other 
methods. In 2005 Derksen conducted a study to assess the accuracy of an inter-annually consistent 
zone of high passive microwave derived SWE retrievals co-located with the Canadian northern 
boreal forest, using extended transects of in situ snow cover measurements (Derksen, 2005). The 
research conducted by Kelly et al. (2001) was focused at the development of a global snow 
monitoring for The Advanced Microwave Scanning Radiometer – EOS (AMSR-E) onboard Aqua 
satellite. The proposed algorithm had the following form: SWE (mm) = B*(TbH18–TbH37), 
where TbH18 and TbH37 are horizontal polarized brightness temperature at 18 and 37 GHz and B 
coefficient has been calibrated as 4.8 mm K–1 for SMMR data. Latter Kelly et al. (2003) described 
the development and testing of an algorithm to estimate global snow cover volume from 
spaceborne passive microwave, AMSR-E. 

The above algorithms used the spectral difference between microwave channels from various 
sensors to estimate SWE or snow depth. However other snow or land parameters such as snow 
grain size and land cover type and conditions have effects on scattering in microwave. Although, 
some researchers introduced land cover type to their models but their algorithms were developed 
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and validated regionally so they can not be used for other study areas. In addition, these 
algorithms use a multi-regression approach to account for the land cover type variation. Then, 
development of an algorithm which considers variation of land cover quantitatively and can be 
used and validated for different areas is necessitated. Normalized Difference Vegetation Index 
(NDVI) has been widely used to represent the health and greenness of the vegetation. In this study 
a non-linear algorithm is proposed, which estimates SWE using spectral difference between SSM/I 
channels along with NDVI data. 
 
DATA USED 
 
SSM/I Data 

SSM/I passive microwave radiometer with seven channels is operating at five frequencies (19, 
35, 22, 37.0, and 85.5 GHz) and dual-polarization (except at 22GHz which is V-polarization only). 
The sensor spatial resolution varies for different channels frequencies. In this study Scalable Equal 
Area Earth Grid EASE-Grid SSM/I products distributed by National Snow and Ice Data Center 
(NSIDC) were used. EASE-Grid spatial resolution is slightly more than 25km (25.06km) for all 
the channels (NSIDC) although the recorded resolution of the microwave spectrum with longer 
wavelengths is more than 50km. The three EASE-Grid projections comprise two azimuthal equal-
area projections for the Northern or Southern hemisphere, respectively and a global cylindrical 
equal area projection. In this we study have used a Northern hemisphere azimuthal equal-area. 

 
Normalized Difference Vegetation Index (NDVI) 

NDVI is typically used to represent the vegetation cover properties and it defines as a difference 
between reflectance in visible and near infrared spectral bands divided by their sum (NDVI = 
(NIR – VIS)/(NIR + VIS)). The NDVI data for this study were obtained from the NOAA/NASA 
Pathfinder Advanced Very High Resolution Radiometer (AVHRR) which is distributed at 
Goddard Space Flight Center (GSFC). The spatial resolution is 8km * 8km obtained within a 10 
day period that has the fewest cloud. To facilitate the comparison and matching of the two datasets 
(NDVI and SSM/I) NDVI data resampled and were brought to the same EASE-Grid projection at 
25km spatial resolution. 

Ground Truth Snow Data 

Point Gauge Measurements 
Surface observations of snow depth data for the study were obtained from point the National 

Climate Data Center (NCDC). The point measurements were averaged and gridded to 25km 
spatial resolution to match EASE-Grid SSM/I spatial resolution. To increase the reliability and 
avoid errors due to interpolation, we have used only those pixels where station data were 
available. If more than one station data were available in a given SSM/I pixel, the station data 
were averaged. 

SNODAS SWE 
Snow products generated by the Snow Data Assimilation System (SNODAS) of NOAA 

National Weather Service's National Operational Hydrologic Remote Sensing Center (NOHRSC) 
are available since October 2003. SNODAS includes a procedure to assimilate airborne gamma 
radiation and ground-based observations of snow covered area and snow water equivalent, 
downscaled output from Numerical Weather Prediction (NWP) models combined in a physically 
based, spatially distributed energy and mass balance model. The output products have 1km spatial 
and hourly temporal resolution. In order to match the EASE-Grid pixels the SNODAS SWE data 
were averaged to 25km. 



108 

ANALYSIS OF THE DATA 

The study area is located in Great Lakes area between latitudes 41N and 49N and longitudes 
87W and 98W. It covers parts of Minnesota, Wisconsin and Michigan states. The area has various 
land covers (Fig 1). The area is covered by 980 (28 by 35) EASE-Grid pixels. To do the time 
series analysis 19 test sites were selected. Each site, 25km*25km, represents an SSM/I pixel. The 
sites were selected based on their latitude and their land cover type along with the annual snow 
accumulation. In order to avoid wet snow conditions we used the data starting December 1 of each 
year to the February 28 of the year after. Three 90 day sets of data were derived for each winter.  

Table 1 shows geographical location of the selected sites and their NDVI characteristics 
including the mean value and variance. High variance of NDVI indicates substantial changes.  

Table 1. Coordinates of selected pixels along with NDVI values 

SSM/I Pixels NDVI= (P–128) × 0.008 Test Site 
Latitude Longitude P value P mean P variance 

1 42.33 –93.62 123.00 123.86 1.07 
2 42.89 –91.97 123.00 123.20 0.45 
3 43.63 –91.43 124.00 124.86 2.27 
4 44.14 –90.57 145.00 143.11 6.19 
5 44.39 –89.12 128.00 132.00 4.24 
6 45.12 –89.11 130.00 132.22 5.14 
7 46.07 –88.19 162.00 155.33 13.53 
8 45.59 –88.21 152.00 157.67 9.06 
9 46.09 –88.79 160.00 161.44 9.10 
10 46.80 –88.46 166.00 152.56 10.63 
11 46.80 –88.16 150.00 157.22 7.95 
12 46.83 –89.69 159.00 158.89 10.53 
13 45.36 –91.18 132.00 132.78 7.50 
14 45.56 –92.68 125.00 130.89 3.66 
15 47.26 –92.78 149.00 143.33 5.10 
16 48.01 –91.88 148.00 154.56 9.82 
17 47.92 –94.08 135.00 137.89 6.55 
18 48.40 –95.99 135.00 132.33 4.36 
19 47.47 –97.47 125.00 124.78 0.67 
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Figure 1: Land Cover Image According to USGS National Atlas of Land Cover Characteristics 
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Test Site 

 
Figure 2. Variation of SWE for winter season 2003–2004 and the corresponding Box plot 

In this study we verify the correlation between SSM/I channels and snow depth and SWE for 
different types of land cover located in different latitudes. Three series (2002–2004) of SSM/I 
channels versus snow depth and SWE for each of the selected sites were derived. The SSM/I data 
were obtained from the descending pass of Defense Meteorological Satellite Program (DMSP) 
satellites. There are three SSM/I scattering signatures used in this analysis. The first scattering 
signature named GTH (19H–37H) is the difference between 19 and 37 GHz in horizontal 
polarization. The second signature, GTVN (19V–37V) shows the discrepancy between vertically 
polarized 19 and 37 GHz. Finally, SSI (22V–85V) presents the difference between 22 and 85 GHz 
in vertical polarization. SSI can be used to identify shallow snowcover. The Box plot of the 
signatures GTH and GTVN for winter season 2003–2004 is shown in figure 3. The outliers in the 
Box plots range from –20 to 20 are due to either sensor or data processing errors which need to be 
eliminated. GTVN mean ranges from 5 to 15 for all the pixels except for the test site 12 which is 
very close to the lake. GTH Box plot and mean has the same pattern as GTVN. The test site 12 has 
a mean around –5 for GTVN (19V–37V) indicating of the fact that part of SSM/I pixel is water. 
Since the SSM/I sensor have different spatial resolution for various channel, the scattering from 
pixel 12 is disturbed in channel 19GHz (69km resolution) by the lake however it is not disturbed 
in channel 37GHz (37km resolution). The low scattering of the water and high scattering of the 
land make the difference of 19V–37V a negative number. 
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Figure 3. Box-Whiskers plot of GTVN and GTH for winter season 2003–2004 
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After elimination of the outliers and negative signatures, a three year time series of GTVN and 
snow depth for each of the test sites was produced. Figure 4 illustrates the trend of SSM/I 
signature of GTVN (19V–37V) versus snow depth at site 9. The plot shows that the discrepancy 
GTVN (19V–37V) increases with increasing snow during the winter seasons. This is due to the 
high sensitivity of channel 37GHz to snow. Contradictory to the high latitudes, low latitude pixels 
do not show a consistent seasonal pattern for snow depth and GTVN (Figure 5).  
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Figure 4. Three year time series of GTVN (19V–37V) vs. Snow Depth for point 9 
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Figure 5. Three year time series of GTVN (19V–37V) vs. Snow Depth for point 2 

The above figures indicate high correlations between snow depth and GTVN for high latitudes 
and lack of correlation for sites located in low latitudes. To quantify the relationships, correlation 
coefficient of various SSM/I scattering signature versus snow depth and SWE are presented in 
figure (6). SSM/I signatures at sites 11, 12, and 13 do have correlation with snow depth since the 
scattering is disturbed by water bodies. A graphical representation of correlation coefficients for 
GTVN, GTH, and SSI for all the test sites is shown in figure 6.  
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Figure 6. Correlations of snow depth vs. SSM/I signatures GTVN (19v–37v), GTH (19h-37h), and SSI (22v-
85v) for various test sites (TS) for winter seasons 01–02, 02–03, 03–04 

 
The correlation coefficients between snow depth and scattering signatures follow a consistent 

pattern for all the winter seasons. For all the sites GTVN and GTH show the same correlation with 
snow depth. In other words, the difference between vertically and horizontally polarized signatures 
is negligible in terms of correlations with snow depth. Contrary to GTVN and GTH, SSI has a 
different pattern. It has the dominant correlation for test sites 1 to 5 but for sites located in high 
latitudes GTVN becomes the dominant. This is because of the saturation of the 85GHZ channel 
over a deep snow pack. SSI can be used to identify and to estimate SWE over shallow snow. In 
case of SWE and SSM/I signatures, Figure (7) illustrates the correlations between SWE and 
different SSM/I spectral signatures. For test sites 1 to 5 SSI has the higher correlation but for the 
other sites GTVN and GTH show better correlations with SWE. Figure 7 also shows that the 
correlations between SWE and scattering signatures are higher than those for snow depth. This 
indicates that SSM/I signatures can be a better estimator of SWE than of the snow depth. 
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Figure 7. Variation of correlations of SWE vs SSM/I scattering signatures for various points for winter 03–04 

The scatter plots of SWE versus the three SSM/I signatures (GTVN, GTH, SSI) have been 
produced for the all the test sites. Figure 8 illustrates the variation of SWE versus scattering 
signatures for selected test sites (2, 9, and 18). 

RESULTS OF THE ANALYSIS 

The presented correlation coefficients in figures 6, 7 represent different winter seasons from 
2001–2004. The analysis of the results indicates the following: 

1) For test sites located in low latitudes, below 45N, (1, 2, 3, and 4) only SSI exhibits some 
correlation with the snow depth. There is no noticeable correlation of GTH and GTVN vs. the 
snow depth. This is due to the saturation saturation effect in  of channel 85GHz which makes SSI 
only suitable for estimating properties of a shallow snow pack.  

2) Sites located in mid- latitudes, 45N–46N, (sites 6, 7, 8, 9) there is some correlation between 
GTH and GTVN vs. snow depth but SSI shows no correlation with the snow depth.  

3) No correlation is observed at sites that are very close to the lake (10, 11, 12, 13, and 14). This 
is due to the different spatial resolution of SSM/I in various spectral bands. The sensors field of 
view increases from 37km at 37GHz to 69km for 19GHz. Therefore if a measurement is made 
close to the lake, the effect of the open water may be different in two channels.  

4) Test sites located in forested areas away from the lake show moderate correlations of snow 
with GTH and GTVN. In addition, scatter plots show an attenuation of brightness temperature due 
to forested land cover. 

5) Both GTH and GTVN show high correlations with physical characteristics of the snow pack 
which makes them good potential estimators for snow depth and SWE. The highest correlations 
are observed in north of the US which is due to larger amount of seasonal snow, colder weather 
and less number of freeze/thaw events during a winter season. 

6) Table 3 presents the correlation between SSM/I spectral signatures and SWE obtained from 
SNODAS. The results show higher and more consistent correlation coefficients for SWE than for 
snow depth. 

7) Figure (8) shows the scatter plots of SSM/I Signatures versus SWE (SNODAS) and SSM/I 
Signatures versus Snow Depth (stations) for winter 2003–2004 in different test sites. Lines fitted 
to each graph have various slopes and intercepts. This demonstrates that having one linear 
algorithm (e.g. Chang or Goodison-Walker) may not be enough for snow depth or SWE in a 
variety of environmental and geographical conditions. 
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Figure 8. SSM/I scattering signatures signature (GTH [19H–37H], GTVN [19H–37V], and SSI [22H-85H]) 
vs. SWE (SNODAS) for winter 2003–2004 
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ALGORITHM DEVELOPMENT 

The study area, Great Lakes area, is located in the transitional zone for snow which experiences 
snow melting during the winter season. In addition to complexity of snow characteristics, 
variability of the land cover types makes it more difficult to accurately estimate SWE from passive 
microwave observations with a single linear model such as the one of Chang or Goodison-Walker 
(Chang et al, 1987, Goodison-Walker 1995). Figure (8) shows that the slope of the best fitted 
equations varies for different test sites (2, 9, and 18). These test sites have different land cover 
type and different NDNI values. In order to quantitatively account for scattering attenuation 
originating from forested areas, NDVI values are suggested to use. Figure (9) illustrates the 
variation of slope and NDVI for winter 2003–2004 for all the sites. Both NDVI and the slope have 
the same trend. This indicates that the increase of NDVI makes the slope of the relationship 
steeper. 
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Figure 9. Variations of the slope of the bets fitted line to scatter plots with NDVI for the test sites for winter 

03–04, SWE vs. GTVN (left), SD vs. GTVN (right) 

The scatter plots of slope versus NDVI for SWE and snow depth are illustrated in figure 10. The 
modified scatter plot for 2002–2003 is for the test sites that snow depth vs scattering signature 
GTVN (19v–37v) showed correlation coefficient more than 50 percent. 
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Figure 10. Variation of the derived slope from the scatter plots vs. NDVI 
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Considering the facts mentioned above we propose a new algorithm which relates SWE and the 
SSM/I scattering signature GTVN (19v–37v) and accounts for possible variation of NDVI: 
 
SWE=F* (A* NDVI* + B)*GTVN,  While NDVI >= 0 
SWE=C*SSI+D      While NDVI <0 
 
where SWE is the snow water equivalent in mm, GTVN (19v–37v), and SSI (22v–85v) are SSM/I 
spectral scattering signatures. Winter time NDVI was obtained from a 10-day composite image for 
January 1994. In the formula above F is a coefficient accounting for small variations on NDVI 
during the winter season. A and B are derived from the slope and NDVI scatter plots. Coefficients 
C and D are determined from the scatter plots of SWE versus SSI using the average of the best 
fitted line to the scatter plots. The Values of coefficients A, B, C, and D entering the above 
formula were found equal to 35, 2, 0.9, and –3 respectively. 

In the case of little or no vegetation protruding through the snow pack the NDVI value is close to 
zero or negative and the formula above converges to the Goodison-Walker algorithm. 

Algorithm Validation 
The new algorithm was examined over by the whole dataset of matched satellite retrieval and 

SNODAS estimates. Figure 11 shows the results obtained with the new algorithm over test site 10 
as compared to Goodison-Walker and Chang algorithms. The tests site 10 is located in latitude 
46.8N and longitude –88.46W in the area covered with mixed forest. As it is seen from the results 
all winter seasons considered (03–04, 02–03, 01–02) application of the results in the smallest Root 
Mean Square Error (RMSE).  
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Figure 11. Comparison of the results for different algorithms for test site 10 (Lat = 48.6N, Lon = –88.46W, 
and NDVI = 0.2) 
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Besides the temporal validation, the new algorithm was spatially validated for the whole study 
area (Latitudes: 41N to 49N & Longitudes: –87W to –98W). There were eleven days (3 days 
December, 4 days January, and 4 days February) in winter 2003–2004 selected. For those days the 
full coverage of the study area from SSM/I data was available. The ground truth data was obtained 
by averaging NOHRC SNODAS dataset. Figure 12 shows the ground truth and estimated SWE for 
January 25, 2004.  
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Figure 12. Comparison of estimated SWE by various algorithms with ground truth data for January 25, 2004 

for the study area (Lat: 41N to 49N & Lon: –87W to –98W) 

 
The NDVI image of the study area (Fig 13) shows higher values of NDVI around the lake. This 

is the area that both Chang and Goodison-Walker algorithms highly underestimate the SWE (Fig 
12). In contrast, the new non-linear algorithm can estimate SWE in the area in the vicinity of the 
lake with much higher accuracy (Fig 13, 14). The calculated RMSE and correlation coefficient 
(R2) are shown for all the three algorithms. The use of NDVI in the new algorithm results in a 
decrease of the RMSE and the increase of the correlation coefficient. It also increases the range for 
the estimated SWE. Figure 15 demonstrates a consistent improvement in the accuracy of the 
estimated SWE for the winter season of 2003–2004. For all days, application of the new 
developed algorithm results in the highest correlation coefficient between SSM/I and SWE. At the 
same time, the RMSE of SWE derived with the new algorithm is lower for all days but one. There 
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is a decreasing trend of in correlations and increasing trend in SWE in February. The most 
probable reason for this trend is snow melt. In February, the study area and especially its southern 
part experienced several melts and refreeze of snow. Estimates of snow depth and SWE with 
satellite observations in microwave become practically impossible when snow is wet. 
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 Figure 13. NDVI image and results of estimated SWE vs. ground truth for January 25, 2004 
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Figure 14. Results of estimated SWE using Chang and Goodison-Walker algorithm vs ground truth for 
January 25, 2004 
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Figure 15. Correlation and RMSE variations for selected days in winter 2003–2004 

CONCLUSIONS  

A non-linear method was developed to estimate SWE using SSM/I scattering Signatures and 
NDVI. The study has shown that current linear algorithms such as Goodison-Walker and Chang 
algorithms are not sufficient for accurate estimations of SWE. In order to resolve this problem 
three winter seasons were studied. SSM/I data with corresponding snow depth, and snow water 
equivalent (SWE) were used to examine the sensors response to the changes in snow pack 
properties. SSM/I response in GTVN (19V–37V), GTH (19H–37H), and SSI (22V–85V) to snow 
depth or water equivalent changes were analyzed. The analysis has revealed that in low latitudes 
with shallow snow SSI has the highest correlation with SWE. In higher latitudes GTVN and GTH 
are better estimators of SWE however the slope of the relationship between the spectral signature 
and SWE varies with location. It is found that the variation of the slope of this relationship is 
correlated with NDVI. This fact was used to propose the new algorithm to estimate SWE using 
SSM/I data and NDVI. Validation of the new algorithm has shown that it allows reducing of the 
error of SWE estimates by more than 20 percent as compared to earlier linear algorithms. The 
analysis of derived SWE distributions over the study area has revealed a consistent improvement 
of retrieval accuracy of SWE with the new algorithm. 
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