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ABSTRACT

In many countries, the design and reliability
of power transmission lines are closely related to
atmospheric icing overloads. Thus, accurate ice
accretion modeling becomes increasingly important
for the optimal design of new lines. At present,
most existing icing models assume a uniform circu-
lar accretion shape and ice mass along a cable
span. But field measurements of ice accretion on
cables have shown evidence of variable cable twis-
ting during icing, which can only be modeled by
considering an eccentric ice load. By using a more
realistic icing shape assumption and considering
cable twisting during the simulation, the accuracy
of models can be improved.

A model is presented to simulate numerically
the wet growth of glaze on a cable of a known
torsional compliance. The ice mass and accretion
size are calculated on a series of nodes along the
cable. First, a heat balance taken on the ice surface
yields the icing rate knowing the precipitation rate
and incidence direction. Then, at each node, and
for each time step, an elliptical ice accretion shape
is assumed and the change in eccentricity and
orientation is calculated. Finally, from the mass,
shape and orientation of the ice accretion, the
torque due to gravity and the aerodynamic torsional
moment are computed, and the resulting cable
twisting is derived for static equilibrium. The aero-
dynamic moment is approximated by using a semi-
empirical expression applicable to a two-dimen-
sional elliptical shape.

An average ice mass load per unit length is
finally calculated as a function of time for a cable
span. Results verify that twisting of a cable changes
the accretion shape and size. Eccentricity of the ice
accretion shape is increased for a more rigid cable.
Also, the total ice load for a cable span is more
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important for a smaller cable which is more flexible
in torsion.

INTRODUCTION

Atmospheric icing of structures is presently a
subject of research interest because of the increa-
sing amount of infrastructures designed for cold
regions (Sakamoto, 1990; Makkonen, 1981). An
overhead power transmission line is one of the most
complicated structures to study, because of its
flexibility and movement during icing. Since icing
data as well as the meteorological conditions pre-
vailing during an icing storm are difficult to obtain,
models have been developed both from icing wind
tunnel experiment and by numerical simulation.
However, since icing is difficult to reproduce with
a reduced scale in a wind tunnel, numerical mode-
ling is being used increasingly (Yip and Mitten,
1991: Makkonen, 1984; McComber, 1984).

Ice accretion samples collected on cables of
overhead transmission lines have displayed shapes
somewhat different from those obtained on rigid
structures. In fact, it has been known for some time
that cables twist under the weight of ice (McCom-
ber, 1984). Icing has a cumulative effect so that
the difference in shape and size influences future
accretion. As shown in Fig. 1, rotation can modify
the accretion rate on a twisted cable by increasing
the effective cross-section. In Fig. 1, the apparent
diameter D; for a fixed cylinder is smaller than D,
the apparent diameter of a twisting cable for rain or
D,, the apparent diameter for wind forces.

Traditionally, electric utilities have based their
transmission line design on a maximum equivalent
radial ice thickness to take into account the icing
load. This choice was probably based on obser-
vations that ice accretion shapes on a cable are
usually fairly circular in shape. Makkonen (1984),




in a previous study, has assumed the ice accretion
shape on a cable to be circular, which corresponds
to the shape obtained on a rotating cylinder in a
wind tunnel. This assumption makes the shape
computations, based on one variable only, much
simpler. However, using a circular shape makes it
impossible to model cable twisting based either on
gravity or aerodynamic torques.
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Figure 1 Diagram of ice accretions for fixed
and twisted cables, showing the angle of rota-
tion.

On the other hand, in the case of rime icing,
McComber (1984) approximated the accretion
shape to include cable twisting under the influence
of an eccentric ice mass. The approach taken was
to consider only the shape in the center of a span
and an equivalent span rigidity on both sides.

Gravity is not the only force to consider in the
model. McComber et al. (1990a) have suggested
that the wind forces will also cause an increased
rotation which, in many cases, can be as important
as the effects of gravity. Hence, it becomes desira-
ble to include wind forces and the resulting cable
rotation in a model for cable icing.

In the following sections, a method to simulate
numerically a freezing rain accretion on a cable,
while taking into account the twisting of the cable
during the accretion, is presented.

GENERAL DESCRIPTION OF THE
NUMERICAL SIMULATION MODEL

In order to simuiate icing on a cabie as a
function of time, one has to make an integration of
the icing rate with time, as well as an integration
along the cable span to obtain the twisting angle.
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In order to consider the effect of both gravity
and wind force on the accretion, a model predicting
the approximate shape along a span is presented. It
uses four parameters to describe the shape at each
node: two of them to characterize the elliptical
shape and two more to locate its center. A finite
element approach is taken to determine the twisting
angle of each node along the cable span. This
model uses two embedded loops,-one for the time
integration and one for integration along the span.
Calculations made in the two loops of the numerical
model, i.e. integration in time and space, will be
presented in the next two sections.

ICING OF A CABLE ELEMENT

During an icing event, a cable receives a cer-
tain amount of supercooled droplets by collision.
The liquid water content w is the mass of drops per
unit air volume. A portion of drops tends to freeze
at impact resulting in an ice accretion. The precipi-
tation intensity, defined as the water impinging on
an object, is given by the following expression:

I=36EwV,=0001p, EP ®

where I is the precipitation intensity (kg/m?/h), E
the collection efficiency, w the liquid water content
(g/m®), V, the drop vertical or terminal velocity
(m/s), P the precipitation rate (mm/h) and p,, is the
water density (kg/m®).

The collection efficiency, E, is usually calcu-
lated for a circular smooth shape using the droplet
median volume diameter. However, for rain drops
sizes, the collection efficiency is unity. For exam-
ple, if the precipitation rate is P = 5 mm/h, the
droplet median volume diameter will be 1.6 mm
(Horjen, 1983). For such a diameter, drops will not
be deflected by the air flow near the cable, and the
collection efficiency equals unity.

For rain precipitation according to Best (1950),
the liquid water content can be related to the preci-
pitation rate by:

w = 0.067 P )

This estimation of the liquid water conient can
be used with Eq. (1) to yield the droplet terminal
velocity, V,:




V, = 4.146 p1%¢ L)

For example, for a precipitation rate of
5 mm/h, the terminal velocity found is V, = 5.31
m/s. The drop velocity V, and incident angle ¢ can
be found from a vector sum of the wind velocity V,
and the terminal velocity Vt.

In the case of wet growth of the accretion, not
all of the impinging water freezes. The freezing
fraction, f, is defined as the fraction of water im-
pinging on the iced cable that freezes. The freezing
fraction can be obtained from a heat balance, deve-
loped in a following section, on the surface of the
accretion. All the water that remains unfrozen is
considered to run off the accretion.

For each time step, the mass accreting is then
calculated by:

8m, =1-D, -f- bt @

om, is the mass accreted (kg/m), D, is the cross
section normal to the incident rain velocity (m*m
or m), f the freezing fraction and &t is the time step

®.

The evaluation of the iced cable cross-section,
D,, requires a knowledge of the accretion shape or
at least its approximation. If a cylinder is fixed and
normal to the droplet flow, an ice accretion appro-
ximately elliptical in shape is formed upstream, as
shown in Fig. 1. This random shape has to be
modeled with sufficient accuracy to determine its
influence on the icing rate.

Elliptical shape approximation for icing

Initially, when ice accretion forms on a cylin-
drical shape, there is a maximum thickness in the
direction of the incident rain and a diminishing
thickness on each side resulting in an approximately
elliptical shape. The icing rate will be at a maxi-
mum where the accretion surface is normal to the
rain direction and it will decrease as the incidence
angle between the rain and the accretion surface
. decreases. This process tends to create an elongated
shape on a more rigid cable, so that it can be mo-
deled by a simple shape, such as an ellipse, with a
varying eccentricity adapting to the changing
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acCrenion shape.

This can be accomplished by a shape characte-
rized by two parameters to determine the size along
the span. This is the minimum number of

73

parameters permitting consideration of a shape with
an eccentricity, a first parameter to give the mass
or volume of the accretion, and a second one to
give the eccentricity of the accretion. But these two
parameters could be any other two parameters
constraining the geometry. The two parameters
chosen in the present model are the major and
minor axis, a and b, of the ellipse (see Fig. 2),
since they give directly an estimation of the accre-
tion size.

Since it is known that the ice forms mostly on
the upstream side of the obstacle, the elongation
tends to increase in a nonsymmetrical fashion with
respect to the cable center, which will displace the
center of gravity of the accretion with respect to the
center of rotation. The location of the center of the
ellipse with respect to the center of rotation must
also be calculated at each time step resulting in two
more parameters, r, and r,, as shown in Fig. 2.

Wind or Rain
—_—

Direction

Figure 2 The ellipse with the relative direction
of the wind.

Heat balance on the accretion surface
The main contributions in a heat balance equa-
tion of a wet icing surface are (Horjen, 1983):

Q.+Q,+Q,+Q,=0 ®)

where Q, is the heat loss by convection, Q, is the
cooling of the impinging water on the surface, Q; is
the latent heat released during freezing. Q, the
Ohm heating of the conductor must be added to Eq.
(6) for live power lines.

. In Eq. (5) the heat loss by convection Q,_ is: .

Q, =A, h8T (6)

where A, is the heat transfer area m?, (for an
ellipse it is approximated

by Ac = 2 #V/(a> + b)/2); h is the average heat
transfer coefficient (W/m?°C) and 8T is the diffe-
rence between the surface temperature and the




ambient air temperature. As long as a fraction of
the impinging water remains in liquid form, the
surface temperature is 0°C, the freezing point.

The heat transfer coefficient, h, is not easy to
estimate for an ellipse since it varies locally on the
cable surface. Here, an average value is used and it
is calculated from the heat transfer coefficient of a
cylinder with an equivalent diameter corresponding
to the section of the iced conductor normal to the
wind direction. From the wind velocity, the Rey-
nolds number is calculated (Re = V, D,./v) and the
heat transfer coefficient is found from the Reynolds
analogy (Rosenhow and Choi, 1961):

Pr*® (hp, C, V) = 10° )
where x = -1259 - .478(log(Re) -2)

The heat transfer to the impinging water to the
surface in Eq. (§) Q,, is:

Q, = m, Cw 8T 8)

The latent heat released during freezing Q; is:

Q = fdm A ©)

where A (kJ/kg) is the latent heat of fusion of the
ice.

Equations (7)-(9) can be combined with Eq.
(6) to yield the freezing fraction:

f=Ach 8Tdm, A + C, 8T/A - QJ8m, A (10)

New elliptical profile

At each time step, the icing is first calculated
from Eq. (4), and then a calculation of the change
in major and minor axes of the ellipse, a and b, is
performed.

The first part is to calculate the change in the
major axis of the ellipse, knowing the ice mass
accreting in &t. The angle © which is the rotation
of the ellipse with respect to the wind direction is
. also the.angle between the wind direction and the
normal to the ellipse surface along the major axis.
The change, at each time step 8t of the major axis,
will therefore be:

a,, = a; + I(f 8t/p) cosb (11)

The ice density, p (kg/m®), is used to convert
the mass into an accretion volume,

Depending on the rotation angle ©, the major
axis of the ellipse might change and become the
second axis b. In such a case, expressions corres-
ponding to Eq. (11) are used for b and ob:

Knowing this change in major axis and the ice
mass accreted, m,, the geometry of the ellipse is
found. Since the accretion is mostly on the ups-
tream side and the shape is approximated by a full
ellipse, the change in major and minor axes occurs
on one side only, and the resulting increases in
distance, r, and r,, between the center of the ellipse
and the center of rotation are:

3r, = 8af2 ; 3r, = 3b2 (12)
The translation of the center of the ellipse
shown in Fig. 2 does not affect the rotational angle
O, which remains the same for the center of the
cable and the center of the elliptical ice shape.

To reduce the possible accumulation of error in
the icing rate, that would be the result of the ellipti-
cal shape, the ice load obtained from Eq. (4) is
used, at each time step, to correct the minor axis of
the ellipse, a or b depending on the angle 8, so
that the volume of the accretion corresponds to the
volume of the elliptical ice shape.

Cross-section of an ellipse normal to an incident
direction

Fig. 3 shows the ellipse centered at the origin
with an incident direction making an angle © with
the x-axis. If (x;,y,) are the coordinates of the
ellipse on the incident diameter, the two points of
the ellipse tangent to the incident direction are
located on the conjugate diameter (x,y.). The
section of the ellipse normal to the incident direc-
tion is found by taking the projection of the conju-
gate diameter in a direction normal to the incident
diameter.

The conjugate diameter coordinates are found
from:

i

x, = a cos(cos™ (xja) + 90°) 13)
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y, = b sin(cos™(x/a) + 90°) (14)

Finally, ihe projeciion in the direction normal
to the incident direction is found from the follo-
wing scalar product:
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Figure 3 The section of the ellipse perpen-
dicular to the incident direction.

D ,=2(x,sin|6]+y cos|6) (15)

The same formulae Eqs. (13) to (15) are used
to find the section perpendicular to the wind direc-
tion, D,, and the rain direction, D .

This new value for the cross-section of the ice
accretion normal to the wind direction is then used
in the next time iteration with Eq. (4).

ROTATION OF THE ICED CABLE

The icing model also requires an integration
along the cable span to determine the angle of
rotation, O, of the ellipse. The cable is divided into
n elements. The torsional rigidity of each element
is considered constant along the span and is evalua-
ted by:

k = GJIL (16)
where k is the rigidity of an element (N.m/rad),
GJ, the rigidity of the cable, the shear modulus, G,
multiplied by the polar moment of inertia, J, (m®)
of the section. L is the element length (m). This
rigidity is not easily calculated for stranded cables,
and measured rigidity in torsion is used in the
simulation.

However, since both gravity and aerodynamic
torques are dependent on the angle © a Newton-
Raphson method is used at each time step

V4 V.Y o Vo S TN
(McComber and Druez, 1552).
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GRAVITY AND AERODYNAMIC TORQUES

The center of gravity of the ice is evaluated,
from the distances of the center of the ellipse with
respect to the center of rotation:

Tega = T, (ablab - D?I4) an
Tegs = T (abab - D*|4) (18)

The gravity torque is found from the ice accre-
tion mass calculated at the center of each element:
L =m g LIr,, cos® +r., sinf] (19)
derivative of Eq. (?) with respect to 0 is easily
found and used in the Newton-Raphson method.

The aerodynamic torque is determined from the
torque or moment coefficient by:

T, = (p, V}f2) D* C,, 20)
The reference diameter, in Eq. (20), is usually
taken as the cable diameter.

The aerodynamic torque and the moment
coefficient are not easy to determine even for a
smooth profile. In the case of growing ice accre-
tion, they can only be approximated.

Potential flow or ideal flow (Milne-Thomson,
1973) around an ellipse at the angle ©, can be used
only as an approximation for high aspect ratio
ellipses. Indeed, an elliptical shape is a bluff body
and therefore the drag which is not considered in
ideal flow plays an important role. The approach
taken here is to use the ideal flow theory to esti-
mate the change in the moment coefficent, C,,
with the changing eccentricity of the ellipse. For
potential flow the moment coefficient is propor-
tional to c2, where ¢ = Va2-b? and c is the dis-
tance of the focus of the ellipse.

C, = (= c*/4a®) sin(26)

where M is the pitching moment per unit length of
cable, , and the chord is 2a. The coefficient C, is

PR mal b A2
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However, an empirical value of C,, is used for
a reference elliptical size in order to ensure that the
order of magnitude of the aerodynamic torque
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calculated is realistic. The empirical result obtained
for a semi-elliptical shape on a cylinder is used
(Richardson, 1980). A small simplification is made
to this model. The experiments were conducted on
smooth cylinders and there is a measured lift for
angle around 180°, which is due to the moving
backward of the separation points of the boundary
layers for this angle which reduces the form drag.
This effect is not included here since in the case of
rime, the important roughness of the ice will cause
an early separation of the boundary layer, increa-
sing the effect of form drag and decreasing the
effect of lift. In view of the moment, coefficient C
is estimated with the following expressions. For -
45° < 0 < 45°0 < 45°,C_is

C_ = 032 c* sind 22)
and for 45° < § < 315°, it is:
C, =032c?[1 - (8 - 45°)/135°] 23

and the plot of this expression as a function of the
angle of attack © is given in Fig. 4.
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-0.974

Moment coefficient

Figure 4 Torque or moment coefficient C,, for
an iced cylinder.

The moment coefficient C_ (Egs. (36)-(37)
‘and Fig. 4) is an approximation and may vary. For
example, if the ice profile becomes flatter, then the
C_, curve in Fig. 4 will get closer to a sinusoidal
curve with its maxima at © = +%/2. But the maxi-
mum Cm will still be directlv related to the shape,
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eccentricity.
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RESULTS OF A COMPUTER SIMULATION
CABLE ICING WITH AN ELLIPTICAL
SHAPE

The objective of the numerical simulation re-
sults presented in this section is to determine the
effect of cable twisting on the accretion shape and
the icing load in the case of freezing rain.

The parameters chosen for the computer simu-
lation were the following: a precipitation rate of
P = 10 mm/h, corresponding to a drop terminal
velocity of V, = 5.31 m/s . The air temperature
was chosen to be -2°C; and the accretion density p;
was 900 kg/m’, corresponding to glaze density. The
wind velocity was chosen to be V, = 5 m/s.

Test simulations were done for two cables with
characteristics similar to those installed at the expe-
rimental icing site of Mount Valin (Canada). One
was a larger cable, an ACSR (Aluminium
Conductor Steel Reinforced) conductor 0.035 m in
diameter and a rigidity of GJ = 351.4 Nm/rad.
The second one was a smaller cable, which is used
as a ground wire on transmission lines, with
D = 0.011 and GJ = 10.8 Nm/rad. The rigidity of
the larger cable is based on measurements perfor-
med by Hydro-Quebec (McComber, 1984), and the
rigidity of the smaller cable is estimated by a com-
parison of its characteristics with the other cable.
The two cables will be referred to as the ACSR
conductor (D = 0.035 m) and the ground wire
(D = 0.011 m). There is no power on these cables,
so that there is no ohm heating (Q, = 0).

Figure 5 shows a comparison for the ground
wire, (D = 0.011 m), of the shape obtained with
the model as compared with the shape obtained on
a fixed cylinder (k = o) and the shape obtained on
a rotating cylinder (k = 0). Fig. 5 shows the shape
obtained in each case at 0, 25, 50, 75 and 100 min
of simulation time. A time step of 5 min was used
for the simulation. It can be seen that the fixed
cylinder accumulates less ice and the rotating cable
more ice. The ice mass accreted on a cable of finite
rigidity as calculated by the present model is closer
to the results of a rotating cylinder.

Fig 6. shows the increasing mass load m
(kg/m), on the ground wire (D = 0.011 m) for the
shapes illustrated in Fig. 5. It shows that a fairly
compliant cable such as the ground wire collects an
amount of ice between the two extreme cases but




closer to the amount collected by a rotating
cylinder.

Fixed Rotating

t Twisting
Cylinder Cylinder

Cylinder

Figure 5 Comparison for the cable (D = 0.011
m) of the shape obtained by the numerical
simulation for k = o (fixed), k = 0 (rotating)
and k = 10.68 N m/rad. (P = 10 mm/h; T =
-2°C, V, = 5 m/s).
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) 50 100 158 200
Time (min)
Figure 6 Increasing mass load for fixed,

rotating and compliant cable (ACSR conductor,
D =0035m) (P=10mm/h; T = -2°C,
V, =5 m/s).

Fig 8. shows the increasing mass load m
(kg/m) on the larger ACSR conductor
(D = 0.035 m) assuming a rigid cable, the finite
rigidity of k = 351.4 N m/rad and finally, a per-
fectly compliant cable k = oo. It shows that a more
rigid cable gives results closer to those of a fixed
cable than those of a rotating cable.

xFig. 9. shéws a‘conklpkakrisbn of the twisted
angle during accretion simulated for the ground
wire with different wind speeds: 0, 2.5, 5 and 7.5

m/s. Zero angle is the horizontal or wind direction.
The case with no wind is equivalent to a calculation
with vertical (@ = -90°) precipitation only. The
larger wind velocities decrease the overall rotation
angle. This means that in effect the wind moment
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Figure 7 Increasing mass load for fixed,
rotating and compliant cable (ACSR conductor,
D =0035m). (P=10mmm; T = -2°C,
V., = 5 m/s).

acts in a way as to decrease the apparent com-
pliance of the cable for angle less than 180°. But
whereas the gravity effects tends to slow down the
rotation at angles of 90° or more, the wind moment
is still important at 90° and changes sign only at
180°. However, the aerodynamic force is strongly
dependent on the eccentricity of the accretion, so
that it has a stronger effect of increasing the rigidi-
ty for a cable with larger rigidity as the ACSR
conductor. This means that the wind effect increa-
ses the difference between a smaller cable and a
larger one. Fig. 8 shows that wind forces become
significant for wind speeds above V = 7.5 m/s.

Figure 9 shows the increasing mass load as a
function of the precipitation rate for the ground
wire (ACSR conductor, D = 0.011 m). There is
very little difference between precipitation rates of
P = 10 and P = 15 mm/h. This confirms that, for
wet growth, icing depends more on surface heat
transfer than on the amount of impinging drops.

Figure 10 shows the increasing mass load as a

function of ambient temperature also for the ground

MARASIN LULRGWLWUL s Az ERR)e naTiv i

almost a linear relationship relating the icing rate
and the temperature difference between the accre-
tion surface and the ambient temperature.




Twisted Angle © (degrees)

Time (min)

Figure 8 Angle of rotation of the smaller cable
(D = 0.11 m) as a function of time for different
wind speeds. (P = 10 mm/h; T = -2°C.

P=5 mm/h —x—
P =10 mm/h —4 —
P =16 mm/h —O—

Ice Mass (kg/m)

] % 50 75 100
Time (min)

Figure 9 Increasing mass load as a function of
the precipitation rate (ACSR conductor,
D = 0.011 m). (T = -2°C; V = 5 m/s).

Rotation along a cable span

The curve of the twisted angle O along the
span is approximately parabolic. This indicates that
the maximum strain will occur at the support and
the minimum strain in the middle of the span. In
such a case, the mechanical breaking of the ice is
more likely to occur first at the span extremities.

Comparison of the two cables

Figure 11 compares the relative icing rate of
the ground wire and the ACSR conductor. In order
to see how one compares with the other the relative

Te-C —x—

Ice Mass (kg/m)

Time (min)

Figure 10 Increasing mass load as a function
of ambient temperature (ACSR conductor,
D = 0.011 m). (P = 10 mm/h; V = 5 m/fs).

mass increase is plotted as a function of time. The
relative mass is obtained as the ratio of the total
mass to the mass accreted in the first 6t (5 min.).
This approach was taken because it would take a
long time of simulation before the time at which the
ground wire would reach the same accretion size as
the ACSR cable.

GJ = 1088 —O—
GI = 3514 —x-—

Relative Mass
s
®

0""'5 =] "'7‘5 ) I'%'
Time (min)

~Figure 11 - Comparison of the relative icing
rates, ground wire (D = 0.0111 m) and ACSR
conductor D = (0.035 m), for P = 10 mm/h.
(T = -2°C; V = 5 m/s).

Figure 11 shows a relative ice load of 16.2 %
more accreted in 100 min. on the smaller cable
(D = 0.011 m) when compared with the more rigid
cable. The effect for freezing rain is less important



than that obtained for rime icing (McComber and
Druez, 1992). This may be due to the fact that for
freezing rain, initially gravity and wind torques,
because of the incident angle, twist the cable in
opposite directions. However, it is difficult to
conclude in this case because the wind torque might
be smaller or larger than the gravity torque.

Even though the simulation was not carried long
enough for the accreted load on the small cable to
reach the load on the large one, this confirms icing
loads measured on these two cables at the Mt.
Valin icing site (Druez et al., 1988).

DISCUSSION

The simulation using an elliptical shape model
shows that a more compliant cable will have a
higher icing rate than a more rigid cable. However,
this effect is less pronounced in the case of freezing
rain than it is for rime icing (McComber and
Druez, 1992). Presently, steel wire having such
compliant characteristics are used by electric utili-
ties as ground wires for overhead transmission
lines. In such cases, the accretion rate of the
smaller cable could be reduced by fixing weight
pendulums along the span. These pendulums, by
making the cable more rigid in torsion, would
reduce potential ice accretion loads and therefore
hopefully would reduce damages due to atmosphe-
ric icing.

The elliptical model presented here is certainly
more complicated than a circular model since it
must compute at each time step four parameters, a,
b, r, and r, at different locations on a cable span.
However, it is a model which can predict, as obser-
ved during field measurements (Druez et al.,

1988), a larger accretion on a smaller cable, and
also can include aerodynamic forces into the simu-
lation. The aerodynamic forces are responsible for
the mechanical breaking of the ice and shedding
during an icing event and therefore are important
for a complete and reasonably accurate accretion
model.

The present model is a compromise between
the oversimplified circular shape and the exact icing
shape at each time step. Even though modern com-
puters offer much cheaper computation time, it
seems that an accurate simulation of the changing
accretion shape, even in the case when a finite
element approximation is used (McComber, 1984),

will result in a model too complicated and difficult
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to verify. The accuracy needed to describe the icing

.shape should be related to the sensitivity of the

shape in the computation of the overall icing load.
For example, in order to reduce computation time,
the time step 8t can be chosen large enough to
correspond to a significant rotation angle at each
step.

By including the effect of the wind in the calcu-
lation, more realistic shapes can be obtained. Ho-
wever, only the average wind velocity was used in
the simulation. The effect of a fluctuating wind
velocity would be a corresponding change in the
cable twisting angle ©. This would have the effect
of creating a more circular shape.

An advantage of having the aerodynamic forces
calculated is that it makes it possible to determine
the stresses occurring in the ice accretion. Calcula-
tion of the maximum stresses can be done easily on
a simple shape such as an ellipse,

McComber et al. (1990a) have suggested that these
stresses occur at both ends of a span at the supports
and are probably responsible for mechanical brea-
king of ice chunks. The calculation of this stress
can eventually permit the inclusion in the model of
a shedding rate which was shown to be correlated
to the wind speed squared (McComber et al.,
1990b).

However, the aerodynamic force, probably as
important as gravity for speeds of about 7.5 m/s, is
not easy to estimate. An approximation for an
elliptical shape, based on experimental values obtai-
ned in wind tunnel for similar shapes, is used in the
present model. This gives a rough estimate of the
order of magnitude of the force and its effect.

With the development of meteorological ins-
truments permitting measurements of the icing rate
at various sites as well as the standard meteorologi-
cal parameters, it is hoped that this numerical
simulation model will be useful in calculating the
predicted loads on overhead power transmission
lines.

CONCLUSIONS

The twisting of cabies during atmospheric icing
is an important factor to consider in the numerical
simulation of cable icing. Indeed, it can explain the
differences in ice accretions heads obtained on
smaller and more compliant cables. It is possible to




model this characteristic through the use of an
elliptical approximation of the shape, instead of the
traditional circular shape approximation.

For cables with lower torsional rigidity, the .
shape obtained by a freezing rain simulation is
more circular and the center of gravity becomes
closer to the vertical line, both effects resulting in a
lower twisting moment developed by the accretion
weight and wind force. For a more rigid cable, the
accretion shape becomes more eccentric and results
in less rotation. The simulation for an ACSR con-
ductor shows that the growth of the accretion is not
as fast for a more rigid cable of this type. This
effect is less pronounced in the case of freezing
rain than for rime accretion.

When the aerodynamic force is added to the
gravity force, it tends to modify the effective tor-
sional rigidity of the cable. In so doing, an increase
in accretion rate is obtained. It is essential to
account for the combined action of the wind. It
increases the precipitation intensity and also icing
by increasing the surface heat transfer. It modifies
the effective torsional rigidity of the cable; and
finally, it creates a wind load to be considered in
the overall load due to icing on transmission lines.
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