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ABSTRACT 

This work analyses the response of four regression-based interpolation methods to changes in 
the number of cases and in the resolution of the digital elevation model (DEM). For this purpose, 
data obtained from an intensive random snow depth sampling (991 measurements) in a small 
catchment (6 km2) in the Pyrenees, Spain, were used. Linear regression, classification trees, 
generalized additive models (GAMs), and a new method based on a correction by applying tree 
classification to residuals of GAMs, were used to calculate snow depth distribution from terrain 
characteristics under different combinations of sample size (100, 200…, 991 cases) and DEM 
spatial resolution, (from 5x5m to 95x95m every 10m of grid size). 

Application of a tree classification to residuals obtained from GAMs yields the best accuracy 
scores. The other tested methods yield rather similar accuracy scores but different levels of 
robustness when a cross-validation procedure is applied. Accuracy of the model predictions 
declines as resolution of DEMs and sample size decreases. However, the sensitivity of the models 
to the number of cases used shows different thresholds, which has relevant implications to 
optimise the relation between the effort involved and the quality of the results, when fieldwork is 
planned. 
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INTRODUCTION 

One of the most reliable procedures to assess snow accumulation in a given area is based on the 
transfer of data from point measurements to neighboring unsampled areas. Accordingly, in recent 
decades many research efforts have sought to develop, test, and compare different techniques of 
interpolating local snow data (Tyler et al.  2005 and the references therein).  

Most such methods belong to the family of regression-based models, which empirically relate 
the amount of snow measured at the sampled points to their terrain characteristics. In this 
approach, different topographical and geographical features, generally derived from a digital 
elevation model (DEM), are used as predictor variables on the basis that they are closely related to 
the accumulation, redistribution, and ablation of the snow cover (Tyler et al. 2005; Molotch et al., 
2005; Jost et al., 2007; López-Moreno and Stahli, 2008). Once the relationships between snow 
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accumulation and predictor variables have been established, the spatial distribution of snowpack 
can be determined for areas with known terrain characteristics. 

Accuracy in the results can potentially be related to many different factors, including the choice 
of regression technique, characteristics of the terrain and climatic conditions of the study area, the 
employed spatial scale, quality of topographic data, sampling strategy, and selection of predictor 
variables. Among these factors, the resolution of the DEM (grid size) and sample size have been 
widely recognized to strongly influence the reliability and stability of predictions made using 
regression models for other disciplines (Tang et al., 2001; David et al., 2002; Cohen et al., 2003; 
Kienzle, 2004; Wechsler, 2006); however, the effects on model performance of the number of 
observations or DEM resolution have been mentioned only occasionally in snow studies, and have 
yet to be studied in detail. 

This lack of analysis is surprising given the relevance of these parameters in snow research. The 
measuring of snow depth or snow water equivalent is not a trivial task: snow sampling requires a 
noticeable investment of human resources. Consequently, a consistent set of criteria should be 
established to aid in determining the required number of measurements. Moreover, it is well 
known that terrain attributes derived from a DEM change with the resolution of the underlying 
grid-cell size, affecting subsequent modeling of surface processes (Zhang and Montgomery, 1994; 
Kienzle, 2004).  

To investigate further the effects of the number of observations and DEM resolution on modeled 
snowpack distribution, this study assesses the effect of sample and grid size on the accuracy and 
robustness of four regression-based methods used to interpolate punctual snow-depth data 
obtained during an intensive snow-sampling survey. 

STUDY AREA 

The study area is located on the southern side of the Pyrenees, close to the main divide 
(Spanish–French border) in the headwaters of the Gallego River, Spain (Figure 1). 

The catchment is close to 6 km2 in area, ranging in altitude between 1700 and 2400 m a.s.l.; all 
snow measurements were taken below 2300 m. The vegetation cover consists of high mountain 
meadows and rocky outcrops in steeper areas. Except for the existence of cliffs beneath some 
ridges, the landscape tends to be relatively gentle, with important variability in terrain curvature 
and slopes of less than 45%. The mean slope of the sampled points is 14%. 

The study area, located in a transition zone between Atlantic and Mediterranean conditions, has 
mixed climatic influences and is exposed to winds from all directions. The mean annual 
temperature is 3°C, with 130 days per year with a mean daily temperature below 0°C. Mean 
annual precipitation is around 2000 mm, with more than half falling as snow (Anderton et al., 
2004). Although the mean winter temperature is below 0°C, the area is subject to intense 
wintertime warm periods that trigger melting events and major metamorphosis of the snowpack; 
these warm spells may occur at any time throughout the snow season. 
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Figure 1. Study area. Dots indicate the locations of snow-depth measurements. 

 

DATA AND METHODS 

Snow sampling survey 
A snow survey was carried out in the spring of 2006 (April 18–21). Fieldwork was planned for 

this time because snowpack in the catchment usually exhibits large spatial variability in spring, 
and terrain characteristics exert a strong control on its distribution. A total of 991 snow-depth 
measurements were collected manually using a steel probe. Each depth measurement involved 
four replicates within 50 cm of the first measurement. A random sampling strategy was adopted to 
obtain a large number of measurements (avoiding sectors with difficult access due to topography) 
and provide greater flexibility in handling the extreme heterogeneity of the snowpack. The 
locations of snow-depth measurements were accurately recorded using a submetric GPS 
(Geoexplorer XTTM handheld with HurricaneTM antenna), later to be translated into the DEM. 

Digital elevation model and terrain characteristics 
The DEM was compiled from a high-quality digitized topographic cartography at a scale of 

1:5000, provided by the Aragonaise Government, Spain (http://sitar.aragon.es/). Isolines 
accounted for a vertical resolution of 5 m. The application of IsoMDE implemented in the GIS 
software MIRAMON (http://www.creaf.uab.es/MiraMon/) enabled the generation of DEMs from 
isolines and additional information such as watercourses, depressions, ridge lines, and spot 
heights. Constrained by the scale of the topography and the distance between isolines, the highest 
spatial resolution considered in our analysis was a grid-cell size of 5 × 5 m. 

The original 5 × 5 m DEM was subsequently degraded to grid-cell resolutions of 15, 25, 35, 45, 
55, 65, 75, 85, and 95 m. Terrain parameters to be used as predictor variables of snowpack were 
subsequently derived from each DEM at different grid sizes.  

The selection of potential predictors was based on their ability to affect the rain/snow limit, 
motion of fresh snow (i.e., wind drift or avalanches), and snow ablation. The selected predictors 
were as follows: 

-Altitude, which determines the type of precipitation (solid or liquid) and the evolution of 
melting in a given area. 

-Slope of the cell, which may affect snow redistribution. 
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-Average solar radiation (RAD) received by each cell of the DEM from December to April 
under clear-sky conditions. This parameter was obtained from a physically based computational 
model (implemented in the MIRAMON GIS software, Pons and Ninyerola 2008). 

-Easting and Northing, which informs on the east–west and north–south orientations of the 
slopes respectively. They were quantified via the sines and cosines of the aspect, respectively. 
Both variables, which logically have colinearity with potential incoming solar radiation, were 
introduced as predictors because they potentially reflect the effects of snow drift or deposition by 
wind. 

-Mean curvature, which identifies concave and convex areas of the catchment.  
-Topographic Position Index (TPI) at 100 m resolution, which informs on the cell position in 

relation to surrounding relief (Jennes, 2006). 
-Compound topographic index (CTI), which is a function of both the slope and the upstream 

contributing area per unit width orthogonal to the flow direction (Gessler et al., 1995). This 
variable is commonly used as a wetness index, and it can inform on the position of a cell within a 
slope. 

Regression-based methods and estimation of model accuracy 
Regression-based methods rest on the creation of dependence models between snow data and 

other independent variables (terrain characteristics) for predicting the values of snow depth in 
unsampled regions. The four methods compared in this study are outlined below :  

 - 1: Linear Models give predictions based on the linear relationships between the response and 
predictor variables according to the following transference function: 

 
z(x)= bo + b1P1 + b2P2 + .... + bnPn   (1) 
 

where z is the predicted value at point x, bo...bn are the regression coefficients, and P1...Pn are the 
values of the predictor variables at point x. The level of significance selected in this study was p < 
0.05. 

- 2: Classification tree models are non-parametric methods based on recursive splitting of the 
information from the predictor variables to minimize the sum of the squared residuals obtained in 
each group (Breiman et al., 1984). The tree size is generally selected according to a threshold in 
the change of the unexplained variance when a new group is obtained. Tree models are one of the 
methods most commonly used for snow modeling, providing an alternative to the assumption of 
linearity in the relationships between snowpack and the physical characteristics of the terrain (i.e. 
Anderton et al., 2004; Molotch et al., 2005). 

- 3: Generalized additive models (GAMs) are non-parametric extensions of generalized linear 
models (GLMs) that estimate response curves with a non-parametric smoothing function rather 
than with parametric terms (Hastie and Tibshirani, 1987). This approach enables the user to 
explore the shapes of predictor responses along the gradient of the dependent variable (snow 
depth), enabling in turn an accurate fit of statistical models to highly non-linear relationships and 
the detection of abrupt changes in the responses of many natural processes (Lehmann et al., 2002). 
Thus, a GAM can be stated as 

 
+ + ++α== )X(f...)X(f)X(fPL))Y(E(g nn2211 + ε   (2) 

 
where each predictor variable Xn is fitted using a smoothing function fn(Xn), α is a constant, and ε 
the remaining residuals. Consequently, a GAM involves the addition of different functions fitted 
to the independent variables in order to predict Y values.  

- 4: Application of tree regression models to GAM residuals. This procedure enables the user to 
address potential interactions between predictors—an important issue that has received increasing 
attention (Austin, 2002). This novel approach for regression models (Maggini et al., 2006) consists 
of fitting a regression tree on residuals to enable the identification of significant interaction terms, 
thereby enhancing the predictive capacity of the initial model. 
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The agreement index (Willmott’s D) was used to evaluate the four models. Willmott’s D is a 
relative and bounded measure used to assess model accuracy: it retains mean information and does 
not amplify outliers (Willmott, 1982). The index also scales the magnitude of variables, thereby 
enabling comparisons between different experiments performed in other locations or at different 
times, independently of differences in the mean magnitude and range of the snowpack.  

Model accuracy was assessed by comparing predictions with the observations used to conduct 
the models, as well as by cross-validation. Cross-validation first consists of splitting the data into a 
number of subsets (five in the present study) and omitting each subset in turn; the model is then 
fitted to the remaining cases, and the obtained equation is finally applied to the omitted subset to 
calculate its predicted value. A large bias obtained between model accuracy using all of the data 
and that quantified from an independent dataset (cross-validation) indicates that model is 
overfitted to the observations; consequently, the capability of the model to predict values for 
unsampled areas is questionable. 

RESULTS 

Effect of grid and sample size on model contribution by predictor variables 
Figure 2 shows the mean contribution to the linear, tree, and GAM models (inter-grid size, inter-

sample size and inter-replications average). It highlights the most influential variables in 
explaining snow-depth patterns in the catchment, revealing clear differences among the different 
regression-based methods. Altitude, curvature, and radiation are the most relevant contributors to 
the models, exceeding 10% in each of the three compared methods. Slope, northing, easting, and 
TPI are of secondary importance within the models, and CTI is the least influential variable. 
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Figure 2. Mean variable contributions to the model (inter-grid size, inter-sample size, and inter-replication 

averages) of the different terrain characteristics considered as predictors. 

Comparison of the three regression-based techniques reveals that tree models show important 
differences compared with the other two approaches. Altitude is of major importance in regression 
tree models, contributing on average around 45% to the models. Conversely, curvature, potential 
incoming radiation, slope, northing, and easting each make contributions of between 8.7 and 
12.6% to regression tree models; TPI and CTI make only marginal contribution (2.3 and 1.2%, 
respectively). 

The contributions of different terrain variables are somewhat similar between GAMs and linear 
models. In these two approaches, altitude and curvature are the most important predictors (each 
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contributing around 20–30%); radiation and slope are also relevant factors (10%), while the 
contributions of the remaining variables are less than 4.5%.  

Behind the averaged values shown in Figure 2, there exists a clear variability in the contribution 
of different terrain characteristics to the models when grid size and sample size are considered. 
Figure 3 shows the effect of sample size and grid size on the contributions of altitude, curvature, 
and radiation in different regression-based methods. The most important pattern observed in 
Figure 3 is the increasing contribution of altitude with decreasing spatial resolution of the DEM. 
With increasing grid resolution, curvature gains in importance in terms of its total contribution: 
this trend is particularly evident for tree models. The role of radiation tends to be relatively 
constant for different grid and sample sizes (with contributions of 10–20%), becoming slightly 
more important with increasing grid size. 
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Figure 3. Effect of sample and grid size on contributions to the model of altitude, curvature, radiation, and slope in 

different regression-based methods. 

Effect of grid and sample size on model accuracy 
Figure 4 shows model accuracy calculated by cross-validation (average of Willmott’s D of 10 

replications) for the four regression-based methods under all possible combinations of grid and 
sample size. Also shown are Willmott’s D values calculated using the same dataset as that used for 
modeling (dotted lines). Focusing on the results obtained by cross-validation, Figure 4 shows that 
application of the tree model to GAM residuals provides the best accuracy under all combinations 
of grid and sample size when an independent dataset is used for validation. For this method, D 
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values range from 0.57 (sample size = 100; grid size = 95 m) to 0.82 (sample size = 991; grid size 
= 5 m). The accuracy of this method is more strongly related to grid size than sample size, as for a 
given grid size the accuracy remains relatively constant with increasing sample size above 200–
300 cases. 

The rest of the regression methods exhibit similar accuracy levels; however, there exist 
interesting differences associated with the number of cases and grid resolution. Regression trees 
results are strongly affected by sample size, as this method requires the most cases to perform 
reasonably accurate predictions; however, tree models are less sensitive to grid resolution than 
linear models and GAMs, providing better predictions for appropriate sample sizes (more than 500 
data points). GAMs and linear models show similar accuracy under different grid and sample 
sizes, with GAMs being slightly more accurate than linear models. For the remaining methods, 
prediction quality remains relatively constant for a given grid size when sample size exceeds 300 
cases; above this threshold, accuracy increases with DEM resolution. The best predictions (D > 
0.75) obtained using GAMs and linear models are obtained with grid cells smaller than 25 m. 
Conversely, the use of cells larger than 65 × 65 m yields predictions that show a marked departure 
from observed values (D < 0.6). 
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Figure 4. Effect of sample and grid size on model accuracy. Labelled dotted lines are Willmot´s D values 

calculated using the same dataset as that used for modelling. Colours are Willmott´s D values calculated by 
cross-validation. 

Figure 4 also enables a comparison of model accuracies determined (i) using the same dataset as 
that used for modeling and (ii) calculated from an independent dataset (cross-validation). In most 
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cases, Willmott’s D value decreases noticeably when an independent dataset is used, suggesting 
that the models tend to overfit their predictions to observations. The accuracy determined from the 
same dataset as that used for modeling appears highly insensitive to sample size, even when 100 
cases are used; grid size affects model accuracy, but to a much lesser degree than when an 
independent dataset is used. 

The greatest differences between the two procedures employed in validating model quality are 
observed for tree models. For this method, values obtained using the same dataset as that for 
model evaluation are always above 0.74, even exceeding 0.9; in contrast, they never exceed 0.75, 
and are commonly often below 0.6, when an independent dataset is used. 

GAMs are also moderately affected by overfitting, with a fall in Willmott’s D values of between 
5 and 10 units when an independent dataset is used. When the GAM residuals are corrected via a 
tree model, smaller differences are observed between the two types of validation. Thus, the 
accuracy scores obtained using the dataset employed for modeling are closely similar to those 
obtained by GAMs, but the prediction accuracies determined by cross-validation are superior. 
Linear models appear to be the most robust in relation to overfitting problems, with the two 
validation approaches yielding similar accuracy levels. 

DISCUSSION AND CONCLUSIONS 

The main results of this study are as follows: 
 
1- On average, the most important variables in explaining snow distribution in the basin are 

altitude, curvature, and radiation. Although the contributions of the remaining predictors were 
relatively low, they still played a significant role in the employed models. 

2- When the effects of grid and sample size are taken into account, grid size appears to be the 
most influential in determining the contributions of the different variables. In general, with a high-
resolution DEM, curvature is the main predictor variable. With decreasing grid resolution, the 
contribution of curvature falls away, with altitude and solar radiation increasing in importance. 

3- Grid and sample size are strong determinants of the accuracy of model predictions. Taken 
together, these factors may account for in excess of 0.3 Willmott’s D units. Model accuracy is 
generally more sensitive to grid size than to sample size. 

4- The application of tree models to GAM residuals provides the best accuracy scores. Although 
the other methods are less accurate, but still provide reasonable performance under various sample 
and grid sizes. 

5- The four regression-based techniques show different thresholds in sample size above which 
the observed increases in model accuracy are very low. These thresholds should be considered 
when selecting the optimal number of required data points for an analysis. 

6- In general, high accuracy scores are obtained with DEM grid cells smaller than 25 × 25 m. 
Grid sizes larger than 55 × 55 m appear to be inappropriate for modeling snowpack at the spatial 
scale considered in this study. 

7- Model assessment must be performed using an independent dataset; otherwise, the quality of 
the results may be a consequence of overfitting to the used observations, and the potential error in 
unsampled areas would remain unknown.  

 
The above conclusions agree with the results of previous studies regarding the importance of 

DEM resolution and/or quality in snow model outputs (Tang et al., 2001; Wechsler, 2007). In the 
present study, accuracy levels fell with reduced spatial resolution, as high-resolution DEMs (grid 
size of 5 × 5 m) are able to capture terrain features in detail, whereas those at lower resolutions do 
not capture the sharpness of the relief.  

One of the main results of this work is the observed nonlinear response of model stability and 
accuracy to sample size. Between 200 and 400 observations seem to be sufficient to obtain 
accurate and robust models; the inclusion of additional cases generally results in only modest 
improvements, with an increase of less than 0.03 Willmott’s D units. The detection of such 
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thresholds, so-called data efficiency thresholds, has been described in several studies related to 
ecology (Peterson and Cohoon, 1999; David et al., 2002), but has remained barely addressed in 
snow studies. 

Among the regression-based methods considered in the present study, the application of tree 
regression to GAM residuals has emerged as a promising tool for modeling snowpack distribution. 
The main strength of this approach is the combination of a highly flexible and nonlinear regression 
method (GAMs), which is valuable in snow modeling (Tyler et al., 2005; López-Moreno and 
Nogués-Bravo, 2006), with tree models, which are a powerful tool in considering interactions 
between variables (Breiman et al., 1984; Anderton et al., 2004; Molotch et al., 2005). Application 
of the three other regression models, using an appropriate DEM resolution and sample size, also 
yields satisfactory results. 

The present results are not directly exportable to other geographical areas; moreover, they could 
vary with different previous climatic and/or nivological conditions to those of the snow sampling 
survey considered here. Thus, the aim of this work is to highlight the importance of grid and 
sample size in snow-model performance, as these factors are commonly selected in the absence of 
defined criteria or without the benefit of choice because of a lack of alternatives. The present 
results indicate that undertaking a number of slightly different analyses during the first surveys of 
a longer-term experiment may help to optimize the relation between the required amount of data 
(which is commonly difficult to collect in snow studies) and the quality of the results. 
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