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ABSTRACT

A stochastic droplet impingement model for soft rime accretion on a wire is used to
evaluate the surface structure as measured by the fractal dimension, local rime density and
Ludlam limit (the limit between dry and wet growth) on a cylindrical shape. This two-
dimensional model calculates trajectories of successive droplets originating from a ran-
domly chosen point at a large distance from a two-dimensional cylinder. The equation of
movement of each droplet is integrated to find the trajectories resulting from the action
of the air drag force. The droplet are assumed to freeze as they impinge on the surface of
the wire or of previously formed ice. The simulated soft rime accretions are then analyzed
numerically to determine the fractal dimension of the contour. High correlation coeffi-
cients indicate good fractal properties of the accretion surface. An estimate of the rime
local density is calculated from the simulation results. The local Ludlam limit is also
verified to provide a limit in the use of the dry growth assumptions.

INTRODUCTION

Atmospheric ice accretion on structures is a major design factor for overhead transmi-
ssion lines in northern regions. The complexity of the ice accretion process and the
scarcity of accretion data make it interesting to develop a simulation model in order to
predict both static and aerodynamic loads on transmission lines.

Ice accretion models applicable to this problem have been developed Ackley and
Tempelton (1979), Lozowski et al. (1984), McComber (1984)) and Makkonen (1984). These
models assume the water to be locally evenly distributed on the surface while solidifying.
This is a reasonable assumption for hard rime modelling, but not for softer rime. In
mountains (altitude > 400 m) where in-cloud icing occurs most frequently, soft rime of
various densities is formed in most instances and a better model is still required for this
type of atmoshpheric ice.

In Fig. 1 is shown typical soft rime accretion obtained at an altitude of 902 m. It
can be seen that the rime is forming in very small branches or feathers in a process that
is highly history-dependent. This type of ice is characterized by the rapid freezing of
droplets where they impact on the accretion surface. Therefore it appears more realistic
to simulate the trajectories of droplets randomly distributed in space, then find the
impingement site on the accretion and consider that the frozen droplet becomes part of the
accretion at that location. Since the accretion growth will be dependent on the random
distribution of droplets in space it is called a stochastic model and is more appropriate
to predict the characteristics of soft rime.

Before attempting to compare the rime simulation with ice collected in the field, it
is essential to estimate and quantify certain characteristics of the random shape obtained.
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Three types of parameters associated with the two-dimensional simulated rime accretions
were investigated by computer and the results are presented in this paper. First the
surface structure is measured by the calculation of the fractal dimension of the contour.
Then an attempt is made to evaluate the local accretion density by the water volumetric
fraction. And finally the Ludlam limit is calculated locally by a surface heat balance in
order to predict the region where there is a change from hard to soft rime.

Figure 1. Photograph of a soft rime accretion taken At Mont Valin (902 m)

NUMERICAL SIMULATION OF RIME ACCRETION ON STRUCTURES

‘The soft rime is first simulated in two dimensions by integrating the equations of
movement to determine the individual trajectories. Droplet trajectories were first cal-
culation by Langmuir .and Blottget (1946) to find the collection efficiency of a structure.
For the soft rime model, droplets are first generated randomly located in space with equal
probabilities. They originate at a large distance from the cable surface modelled by a two
dimensional cylinder. The equation of movement for these droplets is integrated by a
Runge-Kutta scheme to yield their velocity and the position as they approach and impinge on
the accretion.

In undimensional form this equation of movement is written (McComber, 1984):

5
DV _Cd Re o =
K= V-0 (1)

In Eq. 1 the derivative DV/Dt is Lagrangian i.e. taken following the droplet. K is
the Stokes number, V. =v / uy the undimensional droplet velocity and U = u /u, the air
velocity. The reference velocity u, (m/s) is taken far from the obstacle where the air and
droplets are assumed to have the same constant speed. Cd is the Arag coefficient and Re is

the droplet Reynolds number.

The inertia parameter or Stokes number is defined by:

" 2
K="-2 Puly (2)
9 ucC

In this expression C (m) is the cylinder radius, a (m) the droplet radius. u (kg/m.s)
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the absolute viscosity of air and py (kg/m3) the droplet density.

The empirical evaluation of the droplet drag as determined by Beard and Pruppacher
(1969) is used to find the air drag on the droplet. The air velocity is calculated by the
solution of a potential flow around the cylinder which is a realistic approach to simulate
the flow outside the boundary layer on the wupwind side of the cylinder. However, the
effect of the accretion shape on the air flow around the iced cylinder is not taken into
account. This is not very accurate for longer rime formation. There is no doubt that the
accuracy of the potential flow solution could be improved by modelling larger accretion
shapes as growing ellipses.

On impact each droplet of the accretion appears as a pixel on the computer screen and
it is memorized in a screen matrix. For the simulation the ratio between the droplet
diameter and the cylinder diameter is taken to be the same as the one being simulated.

Figures 2 and 3 show random trajectories plotted for increasing values of K. It can
be observed from Fig. 2 and 3 that the important differences in trajectories occur for
0.5 < K< 4. For K < 0.5 most of the droplets simply follow the air flow around the
obstacle. For K > 4 they travel in straight lines undisturbed by the air stream deviation.

g

Figure 2. Droplets trajectories upstream Figure 3. Droplets trajectories upstream
of a cylinder for Stokes numbers of of a cylinder for Stokes numbers of K = 2
K=0.5and K =1 and K = 4

RIME SIMULATION USING THE STOCHASTIC MODEL

For a stochastic simulation of atmospheric icing the accretion size depends on the
number nyg of droplet trajectories calculated. However this simulation can be related to
real time by the use of the appropriate meteorological parameters.

The first step in calculating the simulation time ¢t is to find the mass flux of
droplet impinging on the accretion surface. In general the intensity of accretion I
(kg/mz.s) for a cylinder is given by the following (Makkonen, 1984):

I=Eu,w (3)

where uy (m/s) is the wind velocity, E the collection efficiency and w (kg/m3) the water
liquid conuent.

The collection efficiency is the ratio between the liquid mass impinging on the

accretion surface and the liquid mass that would have impinged on the same surface with no
deviation from the wind effect.
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The mass flow of droplet m (kg/s) generated at a large distance from a cylinder of
radius C can be calculated per unit depth as:

m, =wu, C2a (4)
Then the simulation time can be estimated by:

n m
¢ =-4 d (5)

s My
where my is the droplet mass (g).

The local itensity of accretion j (kg/mz.s) will be given by:

m
A e s (6)

where d6 is the angle for a cylinder surface element, which in turn will determine a local
collection efficiency B on the cylinder surface:

8= i (7)

In Figures 4, 5 and 6 are shown successive shapes obtained by a stochastic simulation
of soft rime accretion. Since in the computer simulation a pixel corresponds to the
droplet size a, the cylinder size C is the main dimension controlling factor. In this case
a ration of 1/350 was taken between droplet and cylinder diameters. This correspond to a
droplet size of 28.6 um in the case of a cylinder 10 mm in diameter. The simulation being
a random process, it is not possible to reproduce twice exactly the same shape. In Fig. 4
is shown a simulation for a Stokes parameter value of K = 0.5, whereas in Figures 5 and 6
the successive shapes obtained for a K = 1 parameter are displayed.

Figure 4. Simulation of rime with K = 0.5
for 500, 1500, 3000 and 4000 droplets

CALCULATION OF THE FRACTAL DIMENSION OF THE CONTOUR

The fractal dimension is a measure of the complexity of a shape. A straight line has
a dimension of one. As the complexity of the line increases the fractal dimension also
increases but remains less than two which is the dimension of an area.
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Mandelbrot (1982) has contributed to the recent increase in popularity of the fractal
dimensions by his study of various random shapes observed frequently in nature. In the
case of the two-dimensional profile resulting from the stochastic simulation of rime
accretion, fractal can be used to evaluate the complexity of the outside contour of the
rime shape.

The measure of the fractal dimension can be done by computer once the two-dimensional
contour has been previously digitized. The method as described in Fig. 7 consists in
taking successive contour measurements, using each time a different length scale r;. The
number N; of successive intersections of circles of radius r; with the countour is counted.
If the line has a more complex shape, taking a smaller r; increases the number of intersec-
tion faster than that of a simple linear relationship. In fact this increase is dependent
on the complexity of the contour.

Next, as 1illustrated in Fig. 8, the logarithm of N; is plotted as a function of the
logarithm of r; to verify if the contour shape has the characteristics of a fractal dimen-
sion shape. If a straight 1line of negative slope 1is obtained with a high correlation
coefficient on the log-log graph then the absolute value of the slope gives the fractal
dimension D.

In order to apply this method to the rime shape a computer code was first developed to
obtain the values of N; for different values of rj. Since part of the problem was to
determine the right intersection of the circle r; with the contour in the case of multiple
intersections, the pixels forming the contour were first 1labelled with an increasing
number. When two intersections were obtained the pixel with the smaller number indicated

the right choice among the different possibilities.

Figure 5. Simulation of rime formation Figure 6. Simulation of rime formation
with K = 1 for 500, 1500 and 3000 with K = 1, y for 4000, 5000 and 6000
droplets droplets

The computer code was first validated using the random shapes obtained by Nittman et
al. (1985), while simulating a phenomenon called the viscous fingers growth. Their simula-
tion was repeated and the random shapes obtained were tested to see if the same fractal di-
mension was obtained. A fractal dimension of 1.4162 was obtained as the average of 20
simulations. This value is indeed the same fractal dimension obtained by these authors.
The computer code could thus be used with confidence on the rime contours themselves.

The best correlations for the fractal dimensions are obtained for simulation with the
Stokes number K in the vicinity of one. In Table 1 is shown the average fractal dimension

65



and the correlation coefficients obtained for six simulations as a function of the number
of droplets trajectories. For fewer droplets the fractal dimension is close to 1 since
there is only a small modification of the cylinder surface. The fractal dimension increa-
ses for more droplets to a maximum of 1.65.

Table 1. Average of the fractal dimension for six simulations as a function of the
number of droplets for K = 1.

Number of Fractal Correlation
droplets dimension coefficient
500 1.04 0.999
2000 1.49 0.995
2500 1.52 0.996
3000 1.57 0.997
4000 1.65 0.998
5000 1.53 0.995

The correlation factors obtained for this series of simulations show that the contour
does follow the fractal dimension law. However the fractal dimension obtained in each
individual simulation depends on the exact shape and therefore vary slightly for each test.

Since K is the most important factor to determine trajectories tests were made for
different values of K. The best fractal dimensions could be measured between K = 0.5 and
2. For higher or lower values the correlation was not as good. Figure 9 shows a summary
of the results of the fractal dimension calculations.
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Figure 7. Measurements of shape contours Figure 8. The number of intersections N; as
with N; intersections of circles of radius a function of the radius r; and the calcula-
i tion of the fractal dimension D from the
slope
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In this figure, the fractal dimension has the following characteristics. At the
beginning of the rime accretion on the cylinder surface the fractal dimension increases
with size. For accretions of medium size, lower fractal dimensions are obtained for higher
inertia parameters. For larger accretions, fractal dimensions tend to be between 1.4 and
1.5.
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Figure 9. Fractal dimension as a function of calculated droplet trajectories for k = 0.5,
1 and 2

EVALUATION OF THE DENSITY FROM THE STOCHASTIC RESULTS

It has been observed that the density (Bain and Gayet, 1982) of rime tends to decrease
on the side of a rime accretion i.e. with increasing angle from the stagnation point. The
same type of observation could be made from the stochastic simulation Figures 4, 5 and 6.
As the ice feathers grow droplets are prevented from reaching into the empty spaces. This
will be more pronounced on the sides of the accretion. An attempt was made to estimate the
density from the simulated shapes.

Since the size of a pixel is taken to be same as a droplet size the comparison of the
accretion pixels to the total number of pixels including the voids will yield the water
volumetric fraction:

number of droplet pixels
total number of pixels part of the accretion

a =

(8)

This is illustrated in Fig. 10. However the density will be proportional to the water
volumetric fraction at any location in the accretion. A comparison of the water volumetric
- fraction ratio is basically the same as a comparison of the density.

In oraer to determine a local density, as a function of the angle on the cylinder
surface the ice accretion is first divided in 12 sectors by equally spaced lines parallel
“to the flow.

There is a difficulty in judging what is part of the accretion or not at the limit
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between two sectors. Since the divisions are made along lines parallel to the flow the
number of pixels in each row between a first accretion pixel in the row and the last one
are considered to be part of the accretion whereas empty pixels before the first one, or
after the last one are considered outside the accretion and are not counted.

In Fig. 11 the water volumetric fraction « is shown as a function of the angle 6 from
the stagnation point on the cylinder surface. It shows that there is no significant
variations of the ice density with increasing angle, it tends to stay constant. The same
observitions were also made for different values of K and are not shown here. In Fig. 12
again for K = 1 the change in density was compared at different times during the same
accretion simulation. In each sector of the accretion the water volumetric fraction is
computed for successive 1000 droplets trajectories. In Fig. 12 the same pattern remains
true. There is no significant variation of volumetric fraction with increasing angle on
the cylinder surface.
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Figure 10. The calculation of the water Figure 11. The water volumetric fraction
volumetric fraction in a portion of the as a function of the angle on the surface
rime accretion. of an accretion for K = 1.

This indicates that this approach of density measurement does not - account for the
decrease in density on the sides and it may depend on how much of the empty spaces are
considered as part of the accretion. However a more accurate description of the accretiorn
boundaries is possible by counting pixels between successive contours instead of the
sectors used above. This improvement of the method is not implemented at this point.

CALCULATION OF THE LOCAL LUDLAM LIMIT ON THE ACCRETION SURFACE

In order to freeze a droplet must first release its latent heat of fusion. At a
certain level of icing intensity a droplet might not have time to freeze before another one
impinges at the same location. If this is the case the second droplet coalesces forming a
larger droplet. This results in the formation of a water film and is called wet growth.
However since the collection efficiency varies with the angle on the cylinder surface, wet
growth will occur first near the stagnation point resulting in harder rime at that site and
softer rime on the sides. With the limit to dry growth calculated locally instead of
globally for the whole accretion, the simulation could be made for both types of rime.

The determination of the dry or wet regime is done through a heat balance on the accretion
surface. The Ludlam limit (Ludlam, 1951) is defined as the critical water content we above
which wet growth will be obtained.
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Considering only the most dimportant contributions to the heat balance (Personne et
Gayet, 1984) on the surface the following equation is obtained:

Qf = Qc + Qw + Qe (9)

where Qf (w/mz) is the heat gain by the droplet freezing, Qc is the heat loss by convection
to the ambiant air, Qw the heat loss to warm droplets to 0°C, Qe is the heat loss by water
evaporation.

The first term is obtained from the icing intensity I by:
Qf = I Lf (10)

where I is the intensity of accretion (kg/mz.s), and Lf the water latent heat of fusion
(3.33 x 10 J/kg)

The heat loss by convection to ambiant air Qc is obtained by Newton's law of convec-
tion:

Qc = h (0°C - ta) (11)

where h (W/m2 OC) is the heat transfer coefficient by convection and ta is the air ambiant
temperature. The heat transfer coefficient is evaluated by the relation between the
Nusselt number and the Reynolds number for the flow around a cylinder:

h 2a / ka = (uy 2a p / p) (12)

ka (W/m®C) is the thermal conductivity of the air. Eq. 12 gives an average heat transfer
coefficient h, the local heat transfer coefficient, he, is obtained from an interpolation
curve to account for its variation as a function of the angle 6.

Qw the heat loss to warm droplets to zero®C is given by:
Qw = I ¢, (0°C - ta) (13)
in this equation Cw (J/kg®C) is the specific heat of water.

Qe is the heat loss by evaporation and is given by the following relation (Personne et
Gayet, 1984):

0.62 h Le (eo - ea)

Cp P,
where Cp (J/kg/®C) is the specific heat heat of air, Le (2.257 x 106 J/kg) is the latent
heat of evaporation, e, is the saturated vapor pressure for water at 0°C (610 Pa), e, is
the saturated water vapor pressure for water at t,, Pa is the atmospheric pressure (101325
Pa).

(14)

Qe =

By combining the previous Egs. 7, 9, 10, 11, 13 and 14, for each sector of the cylin-
der surface it is possible to determine a critical liquid water content w,., that separates
wet from dry growth:

Cc?

0.62 Le (e, - ey)

wo (r) = | ta G, P, hg (15)

Lg + C, t,

B ug

Also this critical liquid water content will have the lowest value at the stagnation
point where it is reffered to as w,. Using a value of 25 mm for C and 14.9 um for the
droplet radius 5000 droplet trajectories were calculated per accretion. The simulation
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time lg

can be calculated from the meteorological parameters using Eq. 5.

was taken of three simulations for the upper

samples available
divided in 31 sectors giving 15
point. The critical liquid water content w

difference.
wet and dry growth, is plotted.

The results appear in Figures 13, 14 and 15 for K = 0.5, 1
to achieve wet growth and the wet growth is more

. o
with values in the litterature (Personne et Gayet,

Using an undimensional representation wc/wo the critical angle 6., separating

for each meteorological

sectors of six degrees

Also an average
and lower part of the cylinder making six
conditions. The cylinder surface was also
on each side of the stagnation

computed for the stagnation point was compared

takes a larger liquid water content w,
concentrated near the stagnation point. As K
angles with less liquid water content.
S0
80f K=1
O 70} t —o—
a o
~ 60F t
] ’(3 —l
=5
9] ty, —o—
Z 4of
e e
w 30
2
:_J 20'
>_
O 10
O ) 1 1 1 1 L
0 0.2 04 0.6 08 10
WATER VOLUMETRIC FRACTION
Figure 12. The different water volumetric

fractions obtained as a function of the
time of simulation and angle on the cylin-
der surface for K = 1.

70

X

]
0.188g/m?

non

DRY GROWTH

N
@]
T

W
(@)

WET GROWTH

N
O

CRITICAL ANGLE (DEG)

S

A

[e) L 1 L ! I L L L
10 12 14 16 18 20 22 24 26 28 30
WATER CONTENT (W, /W)

Figure 14. The critical angle for wet
growth as a function of the undimensional
liquid water content for K = 1 and
w=0.188 g/m3

70

1984) and were verified within a 10%

and 2. For smaller K it

increases the wet growth extend to larger

701 K =05
-~ =0.4 3
© sol W, =0.402 g/m
u
0
¥ 50t

DRY GROWTH

Q 4of
<
- 30p
b -
U g
= 20/’/
A WET GROWTH

10F

0 L L L i L 1 J : n

1012 14 16 18 20 22 24 26 28 30
WATER CONTENT (W /W)

Figure 13. The critical angle for wet

growth as a function of the undimensional
liquid water content for K = 0.5 and
0.402 g/m3

70 K =2
W, = 0.1g/m’
-~ €0r
]
Léi 50F DRY GROWTH
2 ////
]
O
zZ
<
J
g WET GROWTH
O
=
I
O
L 1 | I 1 i 1 Il i
10 12 14 16 18 20 22 24 26 28 30

WATER CONTENT (W /W)

Figure 15. The critical angle for wet
growth as a function of the undimensional
liquid water content for K = 2 and w = 0.1

g/m



CONCLUSIONS

For soft rime, only a stochastic droplet impingement model can reproduce realistically
the feather aspect of rime. This approach might be necessary for realistic simulation in
the case of transmission line icing in high altitude regions where the wind speed encounte-
red and the in-cloud conditions is likely to generate soft rime. Also it has been observed
that for soft rime on flexible structures, as wires or cables, ice shedding is more preva-
lent and therefore should be included in a model.

The stochastic simulation of ice accretion has proven to consume large amount of
computer time since each droplet trajectory must be individually calculated. However this
type of approach is becoming more practical with the lower cost of computer time.

Two-dimensional rime shapes were generated on a cylindrical profile, and some charac-
teristics of the simulation shapes were calculated by computer.

The fractal dimension of the accretion contour was first investigated. At the begin-
ning of the rime accretion on a cable surface the fractal dimension increases with size.
For accretions of medium size lower fractal dimensions are obtained for higher inertia
parameters. For larger accretions, fractal dimensions tend to be between 1.4 and 1.5.

The water volumetric fraction of the accretion was estimated. However this approach
to measure the accretion density could not account for the lower densities observed on the
sides. This can be explained by the difficulty in accurately defining the boundary of the
accretion which is essential to the evaluation of the density. The density might have
large variations depending on the way the boundaries are chosen.

The local Ludlam limit was determined by the consideration of the heat balance at

different angles on the accretion surface and the results can eventually be used to simu-
late more realistically a combination of hard and soft rime.
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