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ABSTRACT 
 

Many freezing rain models have been proposed, but most of them display differences that have 
yet to be reconciled. These differences are mostly related to the way icing intensity is estimated 
from the meteorological variables measured (precipitation rate, wind speed, and temperature). This 
paper compares a few selected freezing rain models using different approaches in determining the 
water mass flux. A sensitivity analysis is made to determine with these models the icing associated 
with the use of hourly meteorological data. The same comparison is also made using the 
meteorological data from one airport site for the January 1998 ice storm. Results show that 
significant differences in the final ice loads are obtained depending on the approach used. 
Following this comparison, it is recommended to use an integration based on drop sizes to 
calculate the water mass flux. It results in a 6% increase in equivalent radial thickness above the 
models currently being used. 
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INTRODUCTION 
 

An accurate estimation of maximum possible icing loads on high voltage transmission lines is 
essential to sound design in northern regions exposed to heavy icing. Since the knowledge of the 
probability and return period of these maximum ice loads has to be based on very few 
measurements obtained from the more frequent smaller events, it can be supplemented by 
information obtained from meteorological icing models. 

There exist many freezing rain models based on meteorological data time series and applicable 
to transmission line icing. Most of them have been reviewed by Makonen (1998). Many of these 
models (AMODEL in Haldar et al. 1998, Goodwin et al. 1982, Jones 1998) have relied on a 
uniform circular ice shape to model the accretion. Chaîné and Castonguay (1974) suggested rather 
a semi-empirical model based on a semi-elliptical accretion shape. If the objective is calculation of 
maximum loads then the dry growth case is considered, i.e., all supercooled water impinging on  
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the ice accretion freeze without any dripping. Most freezing rain models are quite similar and 
differ mainly in how they relate the supercooled mass flux of water to the precipitation rate and 
wind velocities. They all refer to the work of Best (1950) to model the drop size distribution 
although two different sets of parameters are used to describe freezing rain. This is a necessary 
step to relate drop sizes and liquid water content to precipitation rate. The objective of this paper is 
to look at some of their differences in order to appreciate whether these approaches are equivalent 
or if one of them is more accurate.  
 
 
DRY GROWTH FREEZING RAIN MODELS 
 

Freezing raindrops impinge on a collector and for dry growth freeze on it, there is no excess of 
water. The icing rate on the collector is obtained by the product of the collector cross section 
intersecting the supercooled water mass flux. The water mass flux is a vector sum of two 
components: the vertical and horizontal mass fluxes. Figure 1 is an illustration of the two 
components of the mass fluxes. 

 

 
 

Figure 1. Horizontal, vertical, and oblique mass fluxes. 
 
Vertical mass flux  

The precipitation rate, Hg (mm/h), is measured with a precipitation gauge. The vertical mass 
flux of water drops, mv (kg/m2h) is obtained from this measurement, using the water density, ?w (1 
g/cm3): 

 
mv ? 0.001Hg?w .  (1) 

 
But the vertical mass flux of water can also be computed by the amount of water falling 

vertically at terminal velocity, Vt (m/s), in the absence of wind, if drops are considered to have a 
uniform size and terminal speed. It is obtained from the liquid water content, w (g/m3): 

 
mv ? 3.6Vtw . (2) 

 
However, since drop diameters are not uniform but rather follow a statistical distribution, Eqs. 

(1) and (2) are not equivalent.  
 

Horizontal mass flux  
Water drops are also carried by the wind as they fall. Smaller drops have a negligible weight 

and travel horizontally at the wind speed Vw as a result of the wind drag force; the horizontal mass 
flux mH is 

 
mH ? 3.6Vww .  (3) 



But assuming that Eqs. (1) and (2) are equal then horizontal mass flux mH is also 
 

mH ? 0.001Hg? w

Vw

Vt

. (4) 

 
The velocity of individual drops, Vd, is obtained from the vector sum of the fall and wind 

velocities: 
 

Vd ? Vt
2 ? Vw

2  . (5) 

 
If a uniform drop diameter is assumed, usually the median volumetric diameter, the mass flux 

has the same direction as the drop velocity and the total mass flux of water drops is obtained from 
the vectorial sum of Eqs. (1) and (2) or Eqs. (3) and (4): 

 

mo ? mH
2 ? mv

2 . (6) 

   
In chronological order, Chaîné and Castonguay (1974) used the precipitation rate for the vertical 

mass flux and the liquid water content obtained from the precipitation rate to determine the 
horizontal mass flux Eqs. (1) and (3). This assumes implicitly that the precipitation rate is equal to 
the vertical mass flux. Then Goodwin and al. (1982) used the precipitation rate for the vertical 
mass flux and the ratio of the terminal velocity to the wind velocity to find the horizontal mass 
flux Eqs. (1) and (4). AMODEL (Haldar et al., 1998), used in a Canadian Electrical Association 
study and attributed to Makkonen (1998), uses the liquid water content, derived from the 
precipitation rate and the terminal velocity and wind velocity, Eqs. (2) and (4). Finally, Jones 
(1998) used the same approach as Chaîné and Castonguay to find the total mass flux. Hence, the 
differences between these models are essentially related to the computation of the total mass flux 
when the averages values of drop sizes are used . 

For freezing rain, the order of magnitude of drop diameters is typically around one (1) mm. 
Considering the size of typical conductors and average wind speeds, the collection efficiency will 
be almost 100% and the icing rate becomes the product of the mass flux times the cross section of 
the accretion. Once the mass flux is determined, an assumption for the ice accretion shape must be 
made in order to complete a useful model.  

 
Ideal circular accretion shape 

The icing rate is directly proportional to the cross section of the accretion shape. But the 
evolution of the shape and the cross section is difficult to model. In order to compare the different 
approaches used for the mass flux, a circular accretion shape will be assumed. A circular accretion 
shape is the result of a uniform deposit all around the conductor or cylinder. Originally Goodwin 
et al. (1982) followed by Jones (1998) have shown that by using the equality between the 
differential volume increment on a cylinder (?  Di dR) and the volume icing rate (m0 Di/? i, where ? i 
is the glaze density, 0.9 g/cm3), a linear relationship is obtained between the equivalent radial 
thickness, Req, and the total water mass flux. This would result from the cylinder rotation causing 
the impinging water to uniformly spread around the cylinder with an accretion perimeter of ?Di: 

 

? Re ?
mo

?? i

. (7) 

 
Liquid water content and terminal velocity estimation using a drop size distribution  

Best (1950) suggested the use of a common drop size distribution, to fit the experimental data of 
many authors. The cumulative distribution function, F(x), for a drop size, x, is given by a two-
parameter (a and n) exponential cumulative function: 



F(x) ? 1–exp[? (x / a)n ] .  (8) 
 
With this distribution, F(x) represents the percentage of the water volume contained in droplets 

smaller than x mm. The parameter, a, is a reference drop diameter in mm found from the 
precipitation rate:  

 
a ? AHg

p . (9) 

 
The liquid water content is also a function of the precipitation rate: 
 

w ? CHg
r  . (10) 

 
The median volume diameter, dm, of the drops can be evaluated from the same distribution: 
 

dm ? (0.69)1/ n a . (11) 
 
dm = drop median volume diameter, mm. 
 
Using the Best (1950) distribution, the parameters A, C, p, r, and n can be evaluated from 

experimental data collected by various authors. Best suggested taking the average of the eight 
different sets of data which gave the following parameter values: A = 1.30; C = 0.067 ; p = 0.232 ; 
r = 0.846; n = 2.25. But one of these sets of experimental values has been widely used for freezing 
rain and it is the Marshall–Palmer (1948) data giving the values A = 1.0; C = 0.072; p = 0.240; r = 
0.88; n = 1.85. 

With these parameters, the liquid water content, w (g/m3), is given for the so-called Best 
distribution by the following expression (Jones, 1998): 

 
w ? 0.067Hg

0.846 . (12) 

 
The same expression with the Marshall–Palmer parameters is 
 

w ? 0.072Hg
0.88 . (13) 

 
The drop terminal velocity as a function of drop size has been carefully measured. Gun and 

Kinzer (1949) established the terminal velocity as a function of drop diameter. The terminal 
velocity used in the Goodwin et al. (1982) model is computed for a drop of median volume 
diameter. 

 
Drop size distribution for freezing rain 

The so-called Best distribution, Eq. (12) is in fact an average of parameters obtained when a 
common exponential distribution is fitted to the experimental data of different researchers (Best, 
1950). The average was taken without any reference to the type of rain involved in each set of 
data. The Marshall–Palmer distribution, Eq. (13), was just one of the sets of data included in the 
Best study. But it is probably the only one referring to data obtained in a colder northern climate. 
Hence the Best distribution might be a biased average towards conditions of heavier rain recorded 
in warmer weather.  

Kolometchuck and Castonguay (1987) have made a survey of the literature looking for a 
distribution that would corresponds to freezing rain conditions. They reported that Japanese 
researchers have indicated two characteristics related to such a distribution. First, they found that 
the Gunn–Marshall (1958) distribution for snow keeps its characteristics for rain formed by the 
melting of snow crystals formed in clouds at high altitude. Also, they verified that freezing rain 



and ice pellets are first forming as snow at high altitude then melting in an intermediate layer to 
finally become freezing rain or ice pellets in the lower colder layer near the ground. Gunn–
Marshall (1958) in presenting their distribution for snow have made a comparison with the 
Marshall–Palmer distribution for rain by taking into account the difference in terminal speeds of 
snow crystals and water drops. They showed that the only difference between the two is a matter 
of a slight variation of the exponent in the equation for liquid water content, the Gunn–Marshall 
distribution having an exponent of 0.9 instead of 0.88 in Eq. (13). This slight difference in 
exponent is small. The G–M distribution gives less than 1% more for the liquid water content for a 
precipitation rate of Hg = 1.5 mm/h and approximately 1% for precipitation of 0.5 mm/h. In 
summary, the Marshall–Palmer distribution represents the rain distribution equivalent to the 
Gunn–Marshall distribution for snow and it should be preferred to the Best distribution to better 
describe freezing raindrop size distribution.  

 
 

THE FOUR APPROACHES COMPARED 
 
Four approaches or models used for the calculation of the mass flux are compared below. The 

four models are run for dry growth conditions, i.e., with a freezing fraction of unity.   
The first model, Model 1, computes the mass flux from the precipitation rate and liquid water 

content Eqs. (1) and (3), which corresponds to the approach taken by Chaîné and Castonguay 
(1974) and Jones (1998). The Best distribution is included in that model to correspond to the 
Simple Model (Jones 1998).  

The second model, Model 2, corresponds to the accretion obtained from the mass flux derived 
from precipitation and drop terminal velocity Eqs. (1) and (4). This corresponds to the hypothesis 
of Goodwin et al. (1982). In this case the drop size used in the terminal velocity computation is 
found from the Marshall–Palmer distribution.  

The third model compared, Model 3, corresponds to the mass flux found from the liquid water 
content and the drop terminal velocity in the same comparison. This corresponds to Eqs. (2) and 
(4) and the general approach recommended by Makkonen for the AMODEL (Haldar et al. 1998), 
which uses the Marshall–Palmer distribution to find the liquid water content and then computes 
the total mass flux from the vector sum of the velocities.  

Finally, in the last model, Model 4, the mass flux is calculated from the precipitation rate and 
the liquid water content as in Model 1, but an integration of the drop size distribution is made to 
obtain the mass flux. This is the most accurate method in using the drop size distribution. In this 
case also, the Marshall–Palmer distribution is used. Also, an infinitesimal time step is used to 
avoid the error associated with the integration of Eqs. (5) and (6). Model 4 also uses the drop size 
distribution to find velocity and direction associated with the mass flux of each drop size interval. 
This model should be the most accurate way of estimating the water mass flux for freezing rain.  

There is only one last possibility in the combination of the four equations, Eqs. (1) to (4). The 
mass flux could be obtained from Eqs. (2) and (4). However, this approach has not been used 
probably because it would defy logic to use the measured vertically falling precipitation to find the 
horizontal mass flux while not using it also to give directly the vertical mass flux.  
 
 
RESULTS 
 

In order to illustrate the differences associated with the different approaches used in the above 
models, during a freezing rain storm, a sensitivity analysis is made with the four models, described 
above. The same models are then also applied to an interesting case study, that is the meteoro-
logical data of a Montreal Region airport for the 1998 ice storm.  

 
Sensitivity of the accretion size to shape  

The sensitivity of the models with respect to changes in precipitation rate and wind speed is 
investigated. These two variables are the most important ones for dry growth conditions. 



 
 

Figure 2. Sensitivity of the models to wind speeds. 
  

 
 

Figure 3. Sensitivity of the models to precipitation rates. 
 

Results are presented for a precipitation rate of 1 mm/hr, at an average wind speed of 4 m/s with 
a temperature at –3%C for dry growth. The chosen duration of the simulation is twenty (20) hours. 
Figure 2 shows the effect of different wind speeds while the precipitation rate is kept at 1 mm/h, 
while in Figure 3, the precipitation rate is varied and the average wind speed is kept constant at 4 
m/s. 

 All models are about equally sensitive to wind speeds and precipitation rates with the exception 
of Model 2 predicting the largest increase in equivalent radial thickness as a function of wind 
speeds. For precipitation rate variations, Model 4 displays a different behaviour when compared 
with the other three models. It estimates larger accretion size for the increasing precipitation rate. 
The thickness predicted is larger than that of Model 1, for Hg > 1 mm/h and larger than all other 
models for Hg = 1.5 mm/h. 

The larger slope of Model 4 in Figures 2 and 3 as compared with Models 1 and 3 is most 
probably associated with the use of an average drop size in the case of a random variable for a 
nonlinear equation. Although this was not verified, it can be suspected that the use of a probability 
function to describe the wind velocities would result in a similar effect increasing further the 
difference found for Model 4 for higher wind speeds. Model 2 (the Goodwin et al. approach) is 
giving larger accretion for higher wind speeds whereas the other three models are fairly similar for 
wind speed increase. For precipitation rate increase Model 4 is different. It gives a lower accretion 
thickness at a lower precipitation rate and a higher one at higher precipitation rates. This implies 
that if the daily precipitation is distributed with a six-hour or a twenty-four-hour precipitation, it 
could make a significant difference in the computation of the radial thickness.  

 



 
 

Figure 4. Meteorological conditions during the January 1998 ice storm. 
 
A case study: the January 1998 ice storm  

The same four models are also compared for an interesting case study, the January 1998 ice 
storm in eastern Canada and the United States. The meteorological data from the Environment 
Canada St–Hubert Airport (just southeast of Montreal and closer than Dorval to the maximum 
icing area) are used as model inputs. Figure 4 shows total precipitation, wind speeds, and 
temperatures recorded at that location for the duration of the 1998 ice storm. The daily 
precipitation is divided equally to give an hourly average. Only freezing precipitations are used for 
a total of 79,2 mm for the five-day duration of the storm. Wind speeds are taken at the standard 
10-m anemometer height and two cases are considered: the component perpendicular to prevailing 
winds (NNE) giving the maximum component and the component parallel to the same direction 
giving the minimum wind speed component. Also, since the St-Hubert anemometer recorded 
periods of malfunction, wind velocities from the closest airport were used to fill the gaps.  

The simulation was done for a transmission line parallel and perpendicular to the prevailing 
wind direction. This yields the maximum and minimum icing loads computed with these data. 
Results of the comparison are presented in Figures 5 and 6. 

 

 
 

Figure 5. Radial thicknesses for the January 1998 ice storm 
(perpendicular wind speeds). 

 
Figure 5 shows the equivalent radial thickness increase for a conductor normal to the wind 

direction while Figure 6 shows the same result but for a line running parallel to the same wind 
direction. 



 
 

Figure 6. Radial thicknesses for the January 1998 ice storm 
(parallel wind speeds). 

 
In Figure 5, for the wind direction perpendicular to a transmission line, Model 2 yields the 

highest ice accretion size followed in that order by Models 4, 1, and 3. The difference is 6% in 
favour of Model 4 with respect to Models 1 and 3. 

In Figure 6, the comparison for parallel wind is also instructive. Model 1 is slightly above 
Model 4, underlining the fact that their difference in the previous figure is mainly caused by wind 
speeds confirming a similar observation in Figure 3.  

 

 
 

Figure 7. Ice loads for the January 1998 ice storm. 
 

Finally, Figure 7 represents the icing loads found for wind speeds perpendicular to the line, to 
illustrate the amplification of the differences with respect to the equivalent radial thickness. Figure 
7 for resulting ice loads shows a possible difference of 9% between Model 4 and Models 1 and 3. 
Since wind loads are proportional to accretion size, the same ratio would equally apply to the 
difference in wind force and hence on the trigonometrically summed combined wind and ice load.  

 
 
CONCLUSIONS  

 
 In freezing rain models applicable to high voltage transmission lines, the mass flux of 

supercooled water drops impinging on conductors is found from the measured precipitation rate 
and wind velocities using the characteristic of a drop size distribution. The Marshall–Palmer drop 
size distributions should be preferred to the Best distribution to better describe the freezing rain 
characteristics at least until a more appropriate distribution is obtained for freezing rain.  



Four models based on different approaches to the mass flux calculations were compared. Model 
1 is the Jones (1998) and Chaîné and Castonguay (1974) approach with the Best distribution, 
Model 2 is the Goodwin et al. (1982) approach with the M–P distribution, Model 3 is the 
AMODEL (Haldar et al., 1998) approach with M–P distribution, and finally, Model 4 is the same 
approach as Model 1 but using the M–P distribution and an integration of the icing rate for varying 
drop sizes.  

Results of a sensitivity analysis show that Model 2 gives significantly larger accretion size with 
higher average wind speeds. As for the variation of precipitation rate, Model 4 displays a different 
behaviour, having lower increase in size at lower precipitation and higher for the inverse situation. 
Equivalent radial thickness and ice loads obtained on cables and conductors were compared using 
the different models and meteorological data of the January 1998 ice storm in the Montréal region. 
Model 2 gives 20% larger accretion than Models 2 and 3. Model 4 displays a 6% increase in 
accretion size above the other two models. Since the integration of the drop size distribution is 
fairly easy to implement in the computation of the mass flux, it is advisable to do so to avoid an 
error on the icing rate. It is also recommended to use the Marshall–Palmer drop size distribution 
for freezing rain modelling.  
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