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ABSTRACT

Snow loads specified in modem structural design standards, e.g., American National
Standard A58 and the National Building Code of Canada, are calculated as the product of a
ground snow load and a ground-to-roof conversion factor. The design-basis ground snow
loads are sensitive to the choice of probability distribution, since they must be obtained
by extrapolating into the upper tail of the distribution beyond the range covered by the
historical data. This paper considers the selection of probability distributions for
modeling annual extreme ground loads, sampling errors caused by limitations in the data,
and the sensitivity of nominal design-basis snow loads to these factors. Extensive water-
equivalent data from weather stations in the northern United States and Canada are ana-
lyzed. The analysis strongly suggests that the lognormal probability distribution is
preferable for describing the annual extreme ground snow loads at sites in the north-
central United States, while the Type I distribution appears preferable in the northeast
United States and Canada.

INTRODUCTION

Snow loads furnish the governing load requirements for the structural design of roofs
in many areas of the northern United States, Canada, and Europe. Current practice is to
calculate the roof snow load, P,., as the product of a design-basis ground snow load, P,
and a ground-to-roof conversion factor, C, (ANS A58, 1982; NBCC, 1977):

P, =C Pg L
The factor C depends on the exposure of the roof and its geometric and thermal character-
istics (Taylor, 1980; O'Rourke, et al, 1982). The design-basis ground snow load describes
the regional variation in the load and is determined from meteorological data.

The design-basis ground snow load is obtained from a statistical analysis of data
describing the annual extreme snow accumulation. A cumilative probability distribution
function (cdf) is assumed as a model for the annual extremes, the parameters of the
distribution are determined from the data at a given site, and a value of the distribution
with a small probability, p, of being exceeded in any year is selected for design. These
annual probabilities typically range from 0.01 to 0.04 (ANS A58, 1982; NBCC, 1977; ISO
4355, 1981), which correspond to mean recurrence intervals N = 1/p ranging from 25 to 100
years. Snow load contours that are consistent with the calculated values are drawn on a
map. The map shows the regional variation in the ground snow load for code purposes.

The probability distribution for the annual extreme ground snow obviously is an
important element of the snow load provisions. There is some question as to whether a
single distribution is sufficient to model the annual extreme at all sites and what the
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distribution ought to be. This question is significant because it is necessary to extrap-
olate into the upper tail of the distribution beyond the range of observed data to deter-
mine P,. In this range, the values of P, are sensitive to the probability distribution

chosen.g d

PROBABILITY MCDELS

It is instructive to review briefly the history behind the current ground snow
provisions in the United States and Canada (ANS A58, 1972 and 1982; NBCC, 1977).

Studies in the early 1960's of snow depths at some 200 sites in Canada led to a
recommendation that the Type I distribution of largest values should be selected to model
the annual extremes (Boyd, 1961). It was reasoned that since each annual extreme is the
maximum of all snow depths measured during a winter, a Type I distribution should model
the distribution of annual extremes. The ground snow loads in the National Building Code
of Canada (NBCC, 1977) are based on this reasoning, Although the argument underlying the
selection of the Type I distribution is intuitively appealing, nc attempt to test this
hypothesis statistically has been reported. Snow load provisions in Europe (ISO 4355,
1981) have also utilized the Type I distribution, apparently relying on the same intuitive
reasoning.

In the United States, an analysis of 10 years (1952-1962) of water-equivalents of
snow at 140 stations led to the conclusion that the water—equivalents should be described
by a lognormal distribution (Thom, 1966). Thom's study was the basis of the ground snow
maps in the 1972 edition of the A58 Standard on structural loads (ANS A58, 1972). As part
of the work underlying the 1982 revision of the A58 Standard, Redfield analyzed snow
depths at selected stations using a Chi-square test of fit. This analysis confirmed the
choice of the lognormal distribution as a model of ground snow loads, and the ground snow
maps in ANS A58.1-1982 are based on this probability model. A study (Steyaert, et al,
1980) of water-equivalents at first-order weather stations in the northeast United States
found the lognormal distribution to be preferable at a majority of stations using the Chi-
square test; however, the same study found the Type I to be preferable at a majority of
the same stations using the Kolmogorov-Smirnov test. Finally, in a recent analysis of
water—equivalents in the northern United States for the years 1952-1980 (Ellingwood and
Redfield, 1983), the lognormal distribution was found to be preferable to the Type I
distribution by a margin of over two to one. This analysis will be described subse-
quently.

The lognormal distribution for a variable X is given by,

Fin®) = @(SLQX- A);0<x<°° (2)
g

in which * and <:2 are the mean and variance of %n X, and ¢( ) is the standard normal
probability integral (Johnson and Kotz, 1970), Estimates £ and £ of these parameters
depend on the site. The N-year mean recurrence interval value of X, XN' is estimated by,

Rg=exp [§ + 5 o1 (1-1/W] (3)
in which ©™1( ) is the inverse of o( ).

The Type I distribution for X is given by,

F1(x) = exp (—exp[—( - g)]);-—oo <X <w® (4)
9]

in whichu and o are distribution parameters. Estimates of the N-year mean recurrence
interval values for design purposes can be obtained by,

X¢=1-0m [=n (1-1/M] (5)
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in which {I and § are estimates of 1 and o, obtained from the data sample at a particular
site.

The lognormal distribution is a limiting form of the log-Pearson Type III distribu-
tion, which has three parameters. Similarly, the Type I distribution is a limiting form
of a general three-parameter Type II distribution of largest values. These more complex
probabilistic models of snow data were considered in a recent study (Ellingwood and
Redfield, 1984). It was found, in most cases, that the third parameter, while affording
an additional degree of freedom and flexibility, did not yield a significant improvement
in the fit over the two-parameter lognormal and Type I distributions.

STATISTICAL ANALYSIS OF WATER-EQUIVALENTS

The investigations of probability models utilize sets of annual extreme water—equiva-
lents at first-order stations in the northern United States. This is an area where snow
loads tend to be important in structural design. There are many more stations that report
snow depths. However, the relation between depth and density must be established to
compute the load, and this relation is uncertain., Water-—equivalents which can be conver-
ted to load using a multiplier of 5.2 psf/inch (1 g/cm) are more suitable for studying
basic probabilistic models of ground snow load.

The water-equivalents are analyzed using the probability plot correlation coefficient
(Filliben, 1975; Ellingwood and Redfield, 1983) as a measure of distribution fit. With
this method, data being analyzed are rank-ordered and plotted (by computer) at their rank
median plotting positions on probability paper for the distribution being tested., If the
distribution being tested is a good model of the data, the plot of the data will be nearly
linear and the probability plot correlation coefficient will be nearly unity. The distri-
bution for which the probability plot correlation coefficient is closest to unity is
selected for subsequent statistical modeling and testing. The procedure is computer-
automated, enabling a wide variety of distributions to be tested.

Table 1 summarizes the results of the analysis of annual extreme water-equivalents at
stations in the upper Midwest., These data are shown, for convenience, in psf units,
obtained by multiplying the water—-equivalent, in inches, by 5.2. Column 2 of Table 1
lists the number of years of record, column 3 the maximum value observed, and column 4
whether the lognormal (IN) or Type I (I) distribution provides the better fit to the data.
Colums 5 and 6 show, respectively, estimates of the 50-year mean recurrence interval load
and the standard deviation in the estimate of Xg; that is obtained from the distribution
of choice. The latter parameter, SD(Xg,), is a measure of the uncertainty in the estimate
250 based on a sample of the size listed in column 2. Under the assumption that the
sampling error has a normal distribution, one could conclude that the true value of X o is
within #SD(Xgq) with a probability of 68 percent of being correct. The final three
colums give the mapped (50-year mean recurrence interval) ground snow load in the 1972
and 1982 editions of the A58 Standard and in the map developed by Steyaert, et al (1980).
Probability plots of the annual extremes at Milwaukee, WI and Duluth, MN, are shown in
Figures 1 and 2,

Table 1 shows that the maximum observed value in a sample of 28 (or less) observa-
tions usually is less than the 50-year mean recurrence interval value, with a few excep-
tions (viz., Lansing, MI; International Falls, MN; Milwaukee, WI). The maximum in a
sample of M is a reasonable estimate of the M-year mean recurrence interval value (Elling-
wood and Redfield, 1983), Thus, the probability that the maximum in a sample of size M is
exceeded in any given year is roughly equal to 1/M and is influenced strongly by the
sample size, at least for values of M that are typical for climatological data samples.
In contrast, the estimate of the M-year mean recurrence interval value is less sensitive
to sample size than is the sample maximum and is more desirable as a basis for design.
The sensitivity of the distribution to sample size can be seen in Figure 2, comparing the
cdf fitting data from 1952-1962 to the cdf fitting data from 1952-1980 at Duluth, MN.,

It should be noted that while there are some differences between the P, recommended

in A58,1-1982 and NUREG/CR-1389 (1980) (the data sets were slightly differen%), they both
tend to be larger than the loads recommended in ANS A58,1-1972. The trend for the design
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Table 1. Ground Snow Loads from Annual Extreme
Water-Equivalents at First-Order Weather Stations (psf)

Sample statistics (psf) Design snow load, Pg (psf)
Station Size, M Maximm cdf Xg, SD(Xgy) [A58-72 A58-82 NUREG/CR-1389
Alpena, MI 19 34 I 44 8 42 50 47
Detroit Air, MI 22 14 I 15 3 18 20 20
Flint, MI 25 20 I 22 4 20 30 25
Grand Rapids, MI { 28 32 IN 39 10 22 40 28
Houghton Lake, MI 16 33 I 42 7 30 50 50
Lansing, MI 23 34 I 34 6 20 35 25
Marquette, MI 16 44 IN 54 8 50 60 70
Muskegon, MI 28 40 IN 45 12 24 50 50
S, Ste. Marie, MI 28 68 IN 83 16 50 70 60
Duluth, MN 28 55 I 6l 9 45 70 60
Intl. Falls, MN 28 43 I 4 5 35 50 50
Minneapolis, MN 28 34 IN 53 16 42 50 40
Rochester, MN 28 30 I 33 5 35 50 . 30
St. Cloud, MN 28 40 IN 56 18 40 60 40
Green Bay, WI 28 37 IN 39 11 28 40 35
LaCrosse, WI 16 23 IN 34 16 30 40 35
Madison, WI 28 32 IN 34 11 24 30 25
Milwaukee, WI 28 34 IN 34 9 24 35 30

* 1 psf = 47,88 Pa
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snow loads to increase as the number of years of data is increased was also observed in
the Canadian snow load update (Newark, 1984).

An analysis of water—equivalents at 76 first-order stations in the northern United
States (Ellingwood and Redfield, 1983) revealed that the data are better fitted by a
Type I distribution at 26 (or 34 percent) of the stations, while the data are better
fitted by a lognormal distribution at 50 (or 66 percent) of the stations. If only those
38 stations with 28 years of data are considered, the Type I is the choice at 24 percent
while the lognormal is the choice at 76 percent. There is a strong indication from these
results that the lognormal distribution is a better probabilistic model of ground snow
load than the Type I distribution at a majority of stations in the northern United States.

One possible explanation for the differences in distributions observed at different
stations is sampling error due to the finite size of the data samples analyzed. As an
illustration, a large number of data sets containing 28 values each was generated by Monte
Carlo simulation from a parent lognormal population with parameters as defined for
Rochester, NY. Each of these data sets was tested for distribution fit. The results of
this experiment are summarized in Table 2. When sets of 28 are generated from a typical
underlying lognormal population of annual extreme snow loads and are tested for
distribution fit, approximately 25 percent actually will appear to be fitted better by a
Type I distribution. These percentages are quite similar to the percentages observed,
Conversely, when the process is repeated assuming that the parent distribution is Type I,
about 29 percent will be fit better by a lognormal distribution.

Table 2. Percentage of Data Sets Fitted Better
By Lognormal and Type I Distributions

Distribution of Choice
Sets simulated from IN I
LN 75 25
I 29 71

The above explanation for the differences in probabilistic models would be plausible
were it not for the fact that the stations characterized by the Type I distribution tend
to occur in clusters rather than at random over the northeast United States. There are
two distinct clusters of such stations: one in New England and a second in northeast
Michigan. There appears to be a third grouping in northern Minnesota and the eastern
Dakotas, but there are not enough stations in that area to infer any definite regional
patterns., Many of the stations where the Type I distribution appears preferable experi-
ence long periods of continuous snow cover during the winter. The annual extremes at such
stations may be the result of the progressive accumulation of several storms during the
course of the winter rather than a single storm. In contrast, annual extremes at many
stations in the Midwest and plains states, where the lognormal distribution is preferable,
tend to be the result of a major winter storm. Moreover, these data sets are character-
ized by a few years of large values amidst a large number of years of moderate values.

Thus, there is a strong possibility that the differences in distributions may be the
result of different climatological conditions. The dependence of probability models on
local climatology has been observed in connection with a study of annual extreme wind
speeds in hurricane-prone regions as opposed to extratropical regions (Simiu, 1980). 1In
order to examine this possibility, water-equivalent data for 69 stations representing up
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to 25 years of data in northeast Canada were obtained*. These data were analyzed using,
for consistency, the same statistical methods that were used to analyze the data in the
northeast United States.

The analysis of ground snow loads in Canada has been presented recently
(Newark, 1984), so only those results that pertain to the present discussion are presented
herein. The characteristics of the Canadian data, taken as a whole, appear different from
the characteristics of the data from stations in the United States. The Type I distribu-
tion is preferable at 43 (57 percent) of the Canadian stations, while it is the choice at
only 26 (34 percent) of the U.S. stations. The sample coefficients of variation of the
Canadian data sets typically are 0.25-0.45, while in the United States the sample coeffi-
cients of variation typically are 0.60-0.85. The sample means tend to be higher in Canada
while the sample standard deviations are about the same (typically 1.5-4.0 in (37-102
mm)), leading to a smaller sample coefficient of variation.

The results of the tests of distribution fit for the northeast United States and
Canada are summarized in Figure 3. A contour has been drawn (without a rigorous basis)
around the region where the Type I distribution is predominant. The regions of Type I
behavior noted previously in New England and Michigan appear to continue up into Canada.
There are a few lognormal stations in this area, but their presence could be attributable
to the distribution sampling errors described previously. With the exception of the
stations in New York State, where the lognormal distribution clearly is preferable to the
Type I distribution, it appears that ground snow loads in much of the northeast United
States and Canada should be described by a Type I distribution., Conversely, ground snow
loads at stations in the plains states and upper Midwest are described better by a lognor-
mal distribution,

The fact that more than one distribution may be necessary to estimate Xy for design
purposes may have a significant impact on current practice. When lognormal and Type I
probability distributions are fitted to a sample of data for which the sample coefficient
of variation is greater than approximately 0.35, the lognormal distribution has a longer
upper tail than the Type I distribution. For this case, estimates of Xy for N = 25-100
years, will tend to be more conservative assuming a lognormal distribution, Conversely,
if the sample coefficient of variation is less than approximately 0.35, . the Type I distri-
bution has a longer upper tail. Recall that the lognormal distribution has been used to
develop snow load criteria in the United States, where the sample coefficients of vari-
ation are almost always higher than 0.50, Similarly, the Type I distribution has been
used in Canada, where the sample coefficients of variation tend to be 0.35 or less. It
appears fortuitous that the distributions selected in both Canada and the United States
tend to result in conservative estimates of Xy for design,

While this conservatism may be reassuring from a public safety point of view, the
snow load criteria that result may be unnecessarily conservative from the uniform risk
standpoint that has been the basis of the A58 Standard (and other standards) for over 10
years, Table 3a lists several stations for which the distribution of choice is Type I and
the corresponding estimate, Xg5q. The estimate of Xrpn for these stations, under the
assumption that the distribution is lognormal, is also given, Columns 4 and 5 of Table 3a
show the probabilities that Xgg ;1\ are exceeded annually and the corresponding MRI. These
probabilities are smaller, by 4n order of magnitude at some stations, than the probability
of 0.02 corresponding to the 50-year MRI value, However, the assumption of a Type I
distribution at all stations would be unconservative in much of the United States. Table
3b lists several stations for which the distribution of choice is lognormal. Estimates of
Xgg, s under the assumption that the underlying distribution is Type I, and the probabili-
ty 6f exceeding X5y 1 are presented. The mean recurrence intervals associated with design
loads determined or Ithls basis may be less than 25 years. This would be unacceptable in
the United States, where a 50-year mean recurrence interval load has been recommended for
most permanent structures in the 1972 and 1982 editions of the A58 Standard (1972, 1982).

*These data were made available to the writer courtesy of M, Newark of the Atmospheric
Environment Service of Canada (AESC). However, the views expressed herein are those of
the writer, and do not necessarily reflect the opinions of AESC.
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Table 3. Annual Probability of Exceeding Xg, Determined
from Lognormal Distribution

3a. Type I Stations

Station X X PIX > X 1 N
@2h el SOAINT o
Concord, NH 44 65 0.0014 719
Boston, MA 27 31 0.0080 124
Alpena, MI 44 54 0.0049 205
lLansing, MI 34 44 0.0046 218
Duluth, MN 61 67 0.0109 92

3b. Lognormal Stations

Station X X PIX > X 1 N
D @k 30,1 (yr)
Rochester, NY 40 36 0.0287 35
Grand Rapids, MI 39 31 0.0409 24
Minneapolis, MN 53 39 0.0446 22
Green Bay, WI 39 32 0.0344 29
Madison, WI 34 27 0.0359 28

1 psf = 47.88 Pa

SUMMARY AND CONCLUSIONS

Probability models for annual extreme snow loads in the northeast United States and
Canada have been examined. The lognormal and Type I Extreme Value distributions were both
found to be acceptable models at numerous sites. Stations typified by either distribution
appear to be grouped in regions rather than scattered randomly, suggesting a dependence of
distribution on regional climatic conditions, The Type I distribution is preferable at
most sites in the northeast United States and Canada, while the lognormal distribution is
preferable at sites in the upper Midwest and plains states. Standard committees should
consider the advisability of abandoning the notion that one distribution is sufficient to
describe environmental loads such as snow over large areas with widely varying climates.
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