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Representation of Forest Cover
in a Physically Based Snowmelt Model, Phase 11

ROBERT A. HELLSTROM!'

EXTENDED ABSTRACT

The architectural properties of a forest are known to significantly modify meteorological forcing
of snowcover (Hardy and Albert 1995; Metcalf and Buttle 1995; Davis et al. 1997; Hardy et al.
1997; Hardy et al. 1998; Pomeroy et al. 1998a, b; Metcalf and Buttle 1998; Koivusalo and
Heikinheimo 1999). Current numerical snow models utilize a wide range of vegetation
representations for application to particular biomes. Most do not explicitly represent the combined
effects of the canopy on processes of mass (Lundberg and Halldin 1994, Lundberg et al. 1998,
Hedstrom and Pomeroy 1998) and energy transfer beneath the canopy. The results herein
summarize the major findings of Hellstrom (2000).

Phase I (Hellstrom 1999) of this project utilized hourly meteorological measurements from
deciduous, coniferous, and open test sites at the University of Michigan Biological Station
(UMBS, 45°34’ N, 84°40’ W, 238 m), Pellston, Michigan, to develop process-based modules of
sub-canopy longwave irradiance, solar irradiance, wind speed, and precipitation. All modules were
designed to operate using average tree height, vegetation area index and canopy openness
parameters that are easily measured from ground-based (LI-COR 1992) and/or interpreted from
remote sensing imagery (Metcalf and Buttle 1998). Statistical and qualitative comparisons of
measured and modeled above- and below-canopy forcing variables suggested realistic estimated
sub-canopy forcing by the four modules (Table 1).

Table 1. Ratio of below-to-above canopy seasonal mean of forcing variables. Index of agreement (d,,,,)
(Willmott 1981) between predicted and observed below-canopy predictions and observations. Perfect
agreement is theoretically d,,,, = 1. Below canopy measurements were not measured for designations
N/A.

Forcing Variable Deciduous Coniferous
Forest below/above Craiom betowl/above Goacnw
Solar Irradiance 0.38 0.97 0.13 0.84
Longwave Irradiance 1.06 NA 1.13 NA
Wind Speed 0.16 084 0.08 0.80
Precioiat snowfall 082 NA 073 N/A
rainfall 072 NA 063 N/A

! Department of Geography, The Ohio State University, 1036 Derby Hall, Columbus, Ohio 43120-1361,
USA
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In addition, the results of Phase [ suggest:

e The transmittance for solar radiation is about 3 times greater for the deciduous canopy,
and mean values are within 10 % of those measured.

o  Sub-canopy wind speed remained below 2.5 m s for the deciduous and below 1.5 m s
for the coniferous canopy; variability was high, but mean values are within 10% of those
measured.

e  The longwave radiation module plausibly estimated magnitudes beneath the canopy, with
about twice as much enhancement of irradiance below the coniferous forest.

e Although the interception model was not verified, qualitative analysis of simulated sub-
canopy snowfall suggest plausibility with visual observations of water drip and snow slip
from the canopy.

During Phase II, the four modules and a more realistic atmospheric stability scheme (based on
Monin-Obukhov theory) were included independently and in combination to produce modified
versions of the Utah Energy Balance (UEB) snow model (Tarboton and Luce, 1996). A statistical
comparison (Willmott, 1981) between observed and predicted snow depth suggested that the
combination of all four modules and replacement of the stability scheme improved snow depth
simulations beneath the coniferous site and at an open location. The substantial reductions in wind
speed observed and modeled beneath each canopy did not appear to substantially influence snow
depth, particularly with low air temperatures. The effects of wind speed were more significant
with warm air advection during the latter part of the final melt period. Precipitation interception is
important during the early half of the snowcover season, when lake-effect snowfall contributes to
the majority of snowpack accumulation.

A SWE depth (W,) sensitivity analysis was applied to 8 versions of the UEB model (Table 2).
Note that UEBSTAB provides the base of comparison for UEBK, UEBL, UEBU and UEBP. The
major findings of a qualitative analysis (by graphical interpretation) of simulated W, for inclusion
of the four independent modules are summarized below:

UEBK vs. UEBSTAB: Reduction of solar radiation decreased snowpack ablation
throughout the season

UEBL vs. UEBSTAB: Increased longwave radiation increased snowpack ablation
throughout the season

UEBU vs. UEBSTAB: The effects of wind speed were more significant with warm air
advection during the latter part of the final melt period.

UEBP vs. UEBSTAB:  Precipitation interception was important during the early half of
the snowcover season, when lake-effect snowfall contributed to
the majority of snowpack accumulation.

The UEB, UEBFC, UEBSTAB, and UEBMOD models were verified by measurements of W,
at each of the sites throughout the snowcover season: 112 observations at the deciduous site and
78 at the coniferous site (Hellstrém, 2000). The cases below compare observations to model
simulations of snow depth:

UEB: For the open site, W, is greatly underestimated and the timing of final melt
was premature.

UEBFC: Comparison of UEBFC with UEBMOD shows that W, is better estimated by
the UEBFC model for the deciduous canopy, but better estimated by
UEBMOD for the coniferous canopy.

UEBSTAB: For the open site, W, is underestimated during the early half of the season
and overestimated during the latter half; the timing of final melt was within
one day of that observed.

UEBMOD: For both canopies W, is underestimated during early half of season, and
better estimated during latter half. The timing of final melt is within one day
of that observed at both sites.
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The results generally suggest improvement of snow depth simulation beneath the forest canopies
at UMBS, with one noteworthy exception. The original UEBFC model performed better than the
fully modified version, but only for the deciduous site. Considering the poor performance of the
same model for an open site (UEB), it is plausible that the FC parameter used by the original
model is overcompensating for deficiencies found in the open case, which may not be realistic for
other types of forest, such as the coniferous site in this project. Hence, simulations of W, by the
UEB model were highly inconsistent and site specific.

In conclusion, this project has shown that snow depth is sensitive to forest cover modification
of solar radiation, longwave radiation, wind speed, and precipitation, particularly in a coniferous
forest. Opposing transfers of energy and mass by these four processes are important and tend to
moderate meteorological forcing beneath a forest canopy. The fully modified model version
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UEBMOD produced acceptable estimations of snow depth for open, deciduous and coniferous
forests in Northern Michigan.

There are several significant ways to further contribute to the results presented by this project.
Explicit representation of substrate processes such as soil infiltration and changing density of the
snowpack should improve early season simulations of W, and the sensitivity to abrupt melt events.
The diffusion theory applied to all models in this project is not quite valid within the canopy
space: some consideration of large eddy and advection effects should be introduced into
UEBMOD. A synopsis on canopy airflow (Raupach, 1988) provides the motivation for replacing
or adjusting K-theory (diffusion theory) for evaluation of turbulent heat fluxes within the canopy.
Shaw et al. (1988), Raupach (1989a,b), and Leclerc et al. (1990) support this argument. Zeng and
Takahashi (2000) provide a first order closure scheme that supposedly includes the effects of large
eddies on wind flow above and within leafed and defoliaged deciduous canopies. The UEBMOD
model needs further testing in different forest biomes under different climate conditions. Finally,
the UEBMOD model results should be compared with those of other snow models under the same
or very similar environmental conditions.

Incorporated as a distributed snow model, the UEBMOD model could potentially improve
modeling of snow depth and meltwater yield in areas with heterogeneous forest cover. Ultimately
this model could be used for snow and forest management practices for optimizing hydrological
processes on a regional scale.
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