SNOWMELT RUNOFF FORECASTING USING

STATE ESTIMATION TECHNIQUES

Arthur P. O'Hayre

Yale School of Forestry and Environmentsal
Studies
New Haven, Connecticut

ABSTRACT

State estimation approaches using Kalman Filtering are presented as an effective
way of handling the troublesome problems of forecast error estimation and updating
forecasts for snowmelt runoff. State estimation application in hyrology is reviewed
and the basic Kalman Filtering formulation is presented. Most operational forecasting
models are not compatible with state estimation algorithms so a state space forecasting
model is developed using a Constrained Linear Systems (CLS) approach. The model is
calibrated using Kalman Filtering to estimate model parsmeters.

INTRODUCTION

Snovmelt runoff forecasts provide valuable information for the operation of water
resource systems for many regions in the United States and Canada. Forecasts are often
classified as either short term or seasonal forecasts. Continuous hydrologic simulation
models such as the National Weather Service River Forecast System and the U.S. Army Corps
of Engineers SSARR model have achieved considerable success for short term forecasting of
flood flows or daily streamflow. For seasonal forecasts, hydrologic simulation models have
received limited application and little success (Adamcyk et al, 1976). With the
greater complexity and desta requirements of most models, a number of input or state vari-
ables must be forecast, so it is little wonder that hydrologic simulation models have
not replaced regression models for seasonal foecasts.

Regression models generally use less information in a data record than hydrologic
similation models and as a result require a long calibration period before operational
forecasts can be made. As Rango et al (1979} point out, because of the long calibration
period, it is extremely difficult to incorporate additional information, such as that
available from landsat or other remote sensing systems. Changes in the watershed system
can lead to bias in the forecast. It could be many years before the regression model
could be updated to account for these changes.

Some of these limitations can be avoided through the use of hydrologic simulation
models for both short term and seasonsl forecasting. However, the models are deterministic
and cannot easily provide estimates of the expected error associated with the forecasts.
Furthermore, the model is susceptible to the problem of model divergence (Todini and Wallis,
1977). Since hydrologic simulation models are at best poor spproximations of reality, they
must be calibrated with historic records. Model divergence results when the error variance
of the forecast greatly exceeds the error variance during calibration. The phenomena re-
sults from inaccurancies in the model, noisy date, short calibration period, and nomstation-
arity in the data or the system (Todini and Wallis 1977). These same limitations also
appear in the application of regression models.
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More accurate and relaiable forescasts could be achieved with the application of
objective update techniques to correct the major scurces of error during real time
forecasting. (Anderson,1978) Forecasting techniques should also attempt to fully utilize
aveilable information while accounting for the errarand bias in all the scurces of
information.

In this paper, state estimation techniques are developed to provide operational
on line forecasting of snowmelt run off. State estimation theory provides an efficient
and convenient method for handling both forecast error assessment and real time updating
of forecasts. The state estimation procedure involwves both a systems model and a measure-
ment model. Both models contain error. Estimates from both models are combined to provide

an improved estimate of the state of the system {runoff forecast) and error associated
with that estimate. '

The state estimation techniques are difficult to apply to explict moisture
accounting models such as the SSARR or the NWSRFS. A simpler constrained linear systems
(CLS) model is developed to provide forecasts of weekly stresmflow volumes. Weekly
forecasts appear to be quite suitable for operation of hydropower and water supply
facilities. The CLS model is compatible with state estimation using Kalman Filtering for
updating forecasts. The model is also calibrated using state estimation techniques to
estimate model parameters.

APPLICATION OF STATE ESTIMATION TN KYDROLOGY

State estimation generally refers to the methods that combine a dynamic model of
state variables with a measurement of some function of all or some of the state wvariables
in order to provide an improved estimate of all the state variasbles. A powerful state
estimation technique, the Kalman Filter, has recently been applied to estimation problems
in hydrology. Excellent discussions of state estimation theory and applications in hydro-
logy have appeared in a symposium proceedings edited by Chiu (1978), while more general
discussions are available in Gelb (1974} and Schweppe (1973).

The Kalman Filter method for state estimastion can be presented very bdriefly as
comprising a discrete linesr systems model of the form

x{t+1) = A{t) + B(t) U(t) + L{t) w(t) (1)

and a measurement model of the form

z(t) = H(t) x(t) + v{t) (2)
where

x(t) is a n-dimensioned vector of state variables;

u(t) is a m-dimensioned vector of inputs;

w(t) is a p-dimensioned vector of model error;

z(t) is a r-dimensioned vector of measurement error;
and

A(t), B(t), L{t), and H(t) are known matrices of appropriate dimension

Following Gelb (19Tk4) it can be shown from Kalman's original work that if the model
error w(t)and the measurement error v(t) are normally distributed with zero mean and
covariance matricies Q and R respectively, the optimal forecast for time (t+l) given
measurements at time (t) is determined as

x(t+1/t) = A(t 0 x(t/t) + B{t) U(t) (3)

with P(t+1/t) the error covariance for x(t+l/t) expressed as

P(t+14t) = A(t) x(t/t) AT(t) + L{t) q(t) LT(t). (W)
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Thanks to Kalman (1960) the updating of state variables and error covariance are obtained
by the Kalman Filter as

x{t+1/t+1)

x(t+1/t) + K(t+1) z(t+1) - H(t+1) x(t+1/t) (5)

and

P(t+1/t+1)

I ~ K(t+1) H{t+1) P(t+1/t) (6)

where K(t+1) is the Kalman Gain.

An intuitive as well as mathematical treatment of the Kalman Gain is given in
Gelb (1974) and Lattenmaier and Burges (1976). Very briefly, the Kalmen Gain as applied
in equation 5 provides an optimal estimate of the state variables at a given time accord-
ing to the relative uncertainties in the systems model and the measurement model, The
covariance matricies Q(t) and R(t) must be estimated using subjJective judgement or
other approaches (Gelb,19T4; and,Rodriguez-Iturbe et al,1978).

However, & more serious limitation appears in the direct application of the Kalman
Filter for state estimation in hydrology. State estimation as presented above assumes that
the models representing the system and the measurements are also known. Thus to apply
Kalman Filtering to the illustration given in equation 1, the matricies A(t), B(t), L(t),
and H(t) must be known. For applicationto hydrology the measurement model H{'t) can
usually be specified but the systems model is generally unknown. Although a model can be
hypothesized for the system, the parameters must be estimated. For the linear systems
representation in equation 1 an ARMAX(p,q) with a particular order p and q might be speci-
fied as shown by Todini and Wallis (1975) and the associated matricies estimated by
Instrumental Variables or some other method.

Alternatively, by treating the parameters as state variables, Kalman Filtering can
be used directly for model calibration. Hino (1970) in one of the first applications
in hydrology used Kalman Filtering to estimate parameters of a unit hydrograph model.
Applications that have followed the innovative work of Hino have focused on 1)model calib-
ration, 2) sampling and network design and 3)time series forecasting. Wood and
Szollosi-Nagy (1978) and Hino (1973) further demonstrated how Kalman Filtering can be
applied to calibrate rainfall runoff models. In another early application of Kalman
Filtering in Water Resources, Moore (1971) studied the monitoring newtork design and

Rodriguez-Iturbe {1976) used Kalman Filering to address problems in rainfall network
design.

For real time hydrologic forecasting, Todini and Bouillot (1975) and Todini and
Wallis (1978) use state estimation approaches similar to the one presented previously.
Since the coefficient matricies are unknown they must be estimated with a scheme external
to the Kalman Filter. The Instrumental Variables appraoch (IV) developed by Young (197h)
was applied by Todini and Bouillot (1975) to estimate parameters of the systems model
recursively. Todini and Wallis (1978) use an estension of the IV approach for Mitually
Interactive State and Parameter Estimation (MISP) of a rainfall runcff model. Both the IV
and MISP methods require that the state variables be completely observable. For applications
to explicit moisture accounting models,difficulties arise because measurements are often
not available for the state variables representing the components of watershed storage.

Although the Kalman Filter is restricted to linear models, a modification, the
Extended Kalman Filter, has been applied for both state and parameter estimation of
non-linear hydrologic models{Duong et 31,1975). This approach is based on linearization
of the differential equation describing system dynamics. The appraoch does not require
that all state variables be observable, but it does require that instantaneous measure-
ments of some of the state variables are available at discrete time intervals. This
does pose problems for hydrologic applicstions because rainfall and runoff data are often
given as time integrated measurements and our ability to develop adequate continuous
models of watershed hydrology is quite limited.
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SNOWMELT RUNOFF FORECASTING

Despite the rash of papers appearing in the literature on applications of state
estimation techniques to water resources, there have been few applications to snowmelt
runoff forecasting. Anderson (1978) mentions the potential of Kalman Filtering for
automatic updating of snowmelt runoff forecasts but does not mention any applications.
Saelthun (1978) examined several hydrological models and compared their suitability for
snowmelt runoff forecasting on a number of catchments in Norway. Saelthum alsc mentions
that Kalman Filtering had been applied for automatic update of one of the operational
models (presumably the ARIMA model ).

Anderson (1978) suggests that one possible reason that Kalman Filtering applications
have avoided snow is the additional complexity of the snowmelt runoff process. However,
similar complexity exists in rainfall-runoff modeling. Furthermore, state estimation pro-
vides a convenient way of handling <the uncertainty associated with modeling a complex
system. Perhaps more likely explanations for the paucity of state estimation applications
are the difficulties encountered when attempting to formulate an adequate state space
model of snowmelt runoff and the familiarity and satisfaction with existing methods of
forecasting.

The initial attempt in this study was to develop an explicit moisture accounting
model for snowmelt runoff forecasting. The model was to provide forecasts of weekly
streamflow volumes based on previous measurements of precipitation, streamflow and
temperature and was to be compatible with state estimation techniques. A discrete
time model was chosen because of the desire for time integrated forecasts and because of
the lack of instantaneous measurements compatible with a continuous time model,

Considerable difficulties were encountered developing the state space formulation.
Despite the attempt to maintain a physical basis, the model parameters relating state
varisbles at time (t) to state variables at previous times were empirical and had to be
estimated with existing data. Lack of data for many of the state variables precluded
the use of the more efficient parameter estimation techniques. Rather than resort to an
inefficient and perhaps unreliable calibration procedure, an empirical model with
observable state variables was formulated. Nonlinearities are incorporated in two ways:
1) by identifying the nonlinear or time varying behavior in the parameters and 2) by
using a constrained linear systems model for representing system dynamics {Todini and
Wallis 1977).

The state space model given by the matrix equation below was selected for model
calibration, -

EN B 1R E I |
(1) P(2) »p(3) B(W) 0 p(5)-p(6) P(6) %1 W),
Q-1 '
1 0 0 0 0 0 0 P 0
PR, 0 P(7T) 0 P(T) o PRy w(3),
PR, .1 o | 0O 0 1 0 0 0 0 PR, o 0
+
PS, 0 0 1-p(7) o 1-p(7T) © 0 PS, wis),
S
t 0 - - -
S 0 1-P(T) o 1-p(7T) 1-p(5) o Sy_1 w(6),
t-1
i | -o 0 0 0 0 1 0 Sy o 0

where

q is streamflow in mm/week
PR is rain precipitation in mm
P5 is snow precipitation in mm
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S is snow pack water equivilent in mm;

t ceorresponds to weekly time increments;
P(1) corresponds to parameter values;

W is the model error vector.

The state space formulation for calibrating the model described above can be ex-
pressed by considering the hydrologic system as the measurement system of the system
representing hydrologic parameters. The parameter model or systems medel is

1,7 [1 o 0o o o o o | e, [w@),]
P(2), © 1 0 0 0 0 0 P{a), 4| [w(2)y
P(3), o 0 1 0 0 0 O P(3), 4| [W(3),
P()y | = 0o 0 0o 1 0 o0 O P(k), | +|w(k),
P(5), 6 o o o G6(t)o o P(5), | [W(5),
P(6), 0 0 0 o0 0 a{t)o P(6), 4| [W(6),
P(7), c 0 0 o0 0 o0 F(t) P(T)y_y|  |W(T)

where G(t) and F(t) are time varying functions designed to model two expected seasonal
changes in melt and the partioning of precipitation between rainfall and snowfall,

and W is the error vector of systems model and is assumed to have zero mean and
covariance Q.

The measurement model of the parameter system is the hydrologic model expressed
in matrix form as

kN %.1 %2 TRey FRep Spy 5% o ] P(1)y V(l)J
P(2),
+
PR, 0 0 o 0 0 0 PR, ,*P8, .| | P(3), v(2),
= +
P(L),
*
PS*, 0 o o0 0 0 0 PR, _1*#PS, 1 | | B(S)¢| |V(3)y
* P(6)t
5% e 0o .0 O Spa O PR | e | [von,
where
* =
Ps*, =PS - PR,_, - PS,_,
* =
% T8 -8,

V is the measurement model error, assumed to have zero mean and covariance R.



The calibration procedure was applied to eight years of data from watershed 3
(H3) of the Hubbard Brook Experimental Forest in central New Hampshire. Watershed H3
is 42 ha. with elevations ranging from 525 to 730 m. The vegetation is a beech-birch-
maple forest about 60 years old. The soils are shallow and have developed from a thin
layer of glacial till deposited over an unweathered schistose bedrock.

Hydrometeorological data were obtained from the Northeast Forest Experiment
Station's network for the Experimental Forest. Mean daily temperature was obtained from
maximum and minimum temperatures from a thermograph near the base of the watershed. Pre-
cipitation was calculated by the Thiessen polygon method from a network of 3 gtandard
gages and one recording gege. Streamflow is measured at the base of H3 with a weir.

Snow storage measurements were obtained from a regression equation developed by
C.A. Federer(1967). Mean water equivalent of H3 is estimated from three snow courses
located on or near the watershed. The regression model was derived from Theissen polygon
measurements of snow water equivalent obtained during a more intensive sampling period.

Success at calibration was found to depend on careful selection of the error
covariance matricies Q and R for the systems model (parameter dynamics) and the
measurement model (state space hydrologic model), respectively. Selection of approvoriate
values for the matricies @ and R were determined by trial and error following examination
of the operation of the filter. Failure to achieve satisfactory performance of the filter
may result from an inadequate model. However, the Kalman Filter performance is quite in-
sensitive to model specification because the Kalman Filter is able to compensate for
model specification errors by allowing coefficients t¢ change over time. This proved
quite helpful in refining the estimates of the function G(t) and F(t) which control

the seasonal variation in the parameters associated with melt and partitioning of pre-
cipitation between rain and snow.

DISCUSSION AND CONCLUSIONS

State estimation is a promising- technique for foreeasting snowmelt runoff. The
Kalman Filter provides a convenient and efficient method for automatic update and esti-
mation of error bounds on forecasts. A major problem is the selection and calibration
of a state space model that adequately represents the dynamics of snowmelt runoff. How-
ever, as illustrated in this paper, state estimation can also be used to calibrate a
state space model once its structure is known.

Model selection is perhaps the most important step to Kalman Filtering. Parameter
identification using state estimation can be useful in model selection if the calibration
step is followed by diagnostic analysis of the residuals. An alternative approach to the
model selection is a technique for designing Kalman Filters based on multiple models.
(Mehra, 1978, and Veldes et 21,1978).

Results of model calibration carried out for this study show how Kalman Filtering
can be used to develop a state space model suitable for snowmelt runoff forecasting.
However, further dliagnostic checking and exmaination of alternative models should be
performed prior to selecting a forecasting model.
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