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ABSTRACT

The goodness of fit of six probability distributions, Pearson type ITI, Gumbel, log-
normal, cube-root normal, gamma, and Lieblein, for extreme snowfalls was investigated at
18 stations in West Virginia using the coefficient of determination (Rz), Friedman's two-
way analysis, and plotting the theoretical versus observed values. All six models
underestimated the observed extreme snowfalls for longer return periods. The overall
deviation was smallest for the Pearson type III and largest for the Lieblein methods,
which were, respectively, the best and poorest approaches for fitting the extreme snowfalls
in the study area. A simple empirical equation was developed using station elevation and
latitude for estimating the extreme snowfalls of different return periods at ungaged
stations. This equation, applicable to portions of West Virginia at less than 730 m
elevation, accounted for 95% of the variation with 16.5% average absolute error.

INTRODUCTION

Above the south and north temperate zones of the earth, snow functions in a complex
manner with our environment. For example, the winter accumulation of snow may be a source
of water for irrigation, -navigation, and hydroelectric projects in one area, but may
produce early spring flooding in another area. Snow may provide farmers an insulation to
prevent soils from freezing, but it may be a condemned material to people on city
sanitation and highway transportation. A knowledge of the frequency of extreme snowfall is
of interest to many fields and disciplines.

Studies on the occurrences of extreme snowfall are relatively few compared with
studies of extreme rainfall. Dunlap (1970) used Lieblein's (1954) approach of order
statistics to fit the extreme snowfall at 120 stations in the Northeastern United States
including 12 in West Virginia. Dunlap described this approach as '"the most efficient
currently known for fitting a straight line to extreme values.'  Vance and Whaley (1971)
and Reese et al. (1973) found, however, that the Log-Pearson type III and the Pearson type
IIT models, respectively, fit snowfall distributions satisfactorily in the West.

The study objectives were to compare the goodness of fit of Lieblein's method with
that of other probability models, and to derive an equation that could be used to estimate
expected extreme snowfalls of different return periods at ungaged sites. The procedure
included: 1) repetition of Dunlap's work with a longer record (21 vs. 15 years) and more
stations in West Virginia (18 wvs. 12), 2) comparison of the Lieblein method with five
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other distribution models, i.e., Pearson type III, Gumbel, log-normal, gamma, and cube-root
normal, for the goodness of fit, as a basis for selecting a best overall model to estimate
the extreme snowfalls for different return periods in the study area, and 3) derive an
empirical equation to estimate expected extreme snowfalls of different return periods at
ungaged sites.

STUDY AREA AND DATA

West Virginia, located between 37° and 40° N latitude and 78° and 83° W longitude, has
a complex topography with severe elevation changes within short distances. For example,
the elevation ranges from 73 m at Harpers Ferry to 1,482 m at Spruce Knob within a
horizontal distance of about 160 km; elevation differences greater than 900 m occur within
individual counties. The state has about 21,000 square km, or 33% of its total area, at or
above 600 m, and about 5,200 square km, or 8%, at or above 900 m. Its average elevation
(505 m) is about 150 m greater than that of the second highest state (Pennsylvania) east of
the Mississippi River (Lee et al., 1973). Coupling these high mountains with their axis
(NE-SW) oriented perpendicular to the normal winter airflow from the Continental Arctic and
the Great Lakes areas (also perpendicular to the few heavier storms from the southeast off
of the Atlantic), the orographic lifting and resulting condensation causes the Allegheny
Plateau in West Virginia to experience some of the heaviest snowfalls on the Atlantic slope
of the United States (Leffler and Foster, 1974; Chang and Lee, 1975).

The annual maximum daily snowfall data used in this study were obtained from the U.S.
National Weather Service records at 18 stations in West Virginia (Figure 1) for the 21 year
period, 1950-1970. The station elevations range from 164 m (Martinsburg) to 724 m
(Bayard), and the observed extreme snowfall from 13 mm (London Locks) to 711 mm
(Glenville). Since the elevation of the highest station is less than half of the state's
maximum, the unrecorded daily extreme snowfalls greater than 711 mm probably occurred at
elevations above 724 m (Table 1).
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Figure 1. Extreme snowfall station location map.
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Table 1. Snowfall Station, and the Mean, Standard Deviation (SD), Minimum (Min),
and Maximum (Max) of the Extreme Snowfall, 1950 - 1970.

Station Index Elevation %zz;z;::) Mean SD Min Max

Bayard 0527 724 39.27 269.7 124.6 101.6 584.2
Charleston AP 1570 290 38.37 159.8 80.2 66.0 320.0
Charleston 1575 183 38.35 129.8 81.7 58.4 365.8
Elkins 2718 594 38.92 187.2 95.9 86.4 452.1
Fairmont 2920 396 39.47 193.4 93.6 88.9 442.0
Gary 3353 435 37.37 110.1 65.7 12.7 228.6
Glenville 3544 226 38.93 181.2 139.3 76.2 711.2
London Locks 5365 190 38.20 | 98.0 56.2 12.7 215.9
Mannington 1IN 5621 297 39.55 173.1 97.1 76.2 523.2
Martinsburg AP 5707 164 39.40 192.0 105.6 76.2 533.4
Morgantown AP 6202 379 39.63 162.8 90.6 76.2 449.6
New Martinsville 6467 194 39.65 138.2 62.9 6.4 317.5
Parkersburg AP 6849 255 39.35 126.2 71.7 25.4 304.8
Parkersburg City 6859 187 39.27 142.0 90.8 50.8 398.8
Petersburg 6954 309 39.00 212.3 150.1 50.8 660.4
Rowlesburg 7785 419 39.35 200.5 70.3 76.2 381.0
Wheeling Warwood Dam 9492 201 40.10 166.7 114.5 38.1 482.6
White Sulphur Springs 9522 583 37.80 174.5 92.2 50.8 406.4

Note: All snowfall statistics are in millimeters.

FITTING THE SIX PROBABILITY MODELS

The six probability models, i.e., Pearson type III, Gumbel, log-normal, gamma, cube-
root normal, and Lieblein, used in this study have frequently been fitted to hydrologic
and climatic data in numerous regions with satisfactory results. Details of these six
models can be found in textbooks of hydrology, Barger and Nyhan's (1960) work, and
elsewhere.

The observed extreme snowfalls at the 18 stations were fit by the six models. For
comparing the goodness of fit among the six probability models on the distribution of
extreme snowfall in West Virginia, three procedures were used: 1) computing the
coefficients of Determination (R2), as suggested by Gupta (1970), of the six probability
models for each station, 2) using Friedman'’s (1937) two-way analysis by ranking these R2
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values among the six models at each station, and 3) plotting the theoretical values
computed by the gix models versus observed values on probability paper for each station.
The R2 value, measuring the goodness of fit between the theoretical and observed values at
a single station, was computed by

_ ¥ 2
R =1 - Eﬁfﬂ__ﬁiﬁi_ (1
Iy - Xp)?

where ﬁm and iﬁ are the theoretical wvalues and the mean of the samples, respectively, and

is observed values. Friedman's analysis starts by ranking the RZ values from lowest to
highest at each station and summing the ranks of all stations for each distribution. The
Chi-square (Xg), was obtained by the following equation used to test the significance of
the hypothesis at a selected probability level:

12(zr?)
X2 = - 3n(k + 1) (2)
nk(k + 1)

where n is the number of stations, k is the number of distributions, and Zr2 is the sum of
the squared values of the total ranks of each distribution. The critical values can be
found from Chi-square tables using (k - 1) degrees of freedom. The technique was first
used to test the differences among the six models. After it was confirmed that at least
one model was significantly different from the others, the test was repeated to analyze the
difference between any two models.

The total values for the 18 stations ranked as described above were highest for the
Pearson type III and lowest for the Lieblein methods (92 vs. 34). Table 2 reveals: 1)
within each model, about 837% of the stations were best or next to best fit to the Pearson
type III distribution and 83% were poorly fit to the Lieblein method; 2) within the highest
rank (i.e., 6), the Pearson type III method appeared at 61% of the stations and Lieblein at
11%; and 3) the R® values of the Pearson type III method ranked in the lower two categories
11% of the time. From these analyses it seems logical to conclude that, of the six models,
the Pearson type III distribution generally had the highest RZ value and, consequently, the
best fit at the most stations. Friedman's technique of rank analysis confirmed that the
six distribution methods differed significantly at an alpha level less than 0.00l.

For the comparison between any pair of the six models for fitting the extreme
snowfalls, the analysis of Friedman's technique showed that the Pearson type IIT method
differed from the log-normal, cube-root normal, gamma, and Lieblein's distribution models
at the probability level (P) greater than 997 and that there was little statistical
difference (P = 667%) between the Pearson type III and the Gumbel (Table 3). The Lieblein
model was statistically different (P > 94%) from the other five models, and there was no
significant difference between the cube-root normal and the gamma models (P = 847%).

Generally, the predicted values of the six models were lower than the observed values
for longer return periods, and particularly so for the Lieblein method. Average deviation
of the predicted extreme snowfall from the maximum observed values for the Lieblein method
was 114 mm, whereas mean deviations were 43 mm for the Gumbel, 78 mm for the Pearson type
ITI, 79 mm for the log-normal, 97 mm for the cube-root normal, and 97 mm for the gamma.
The prediction with the greatest deviation was at Glenville, Gilmer County, where the
Lieblein method prediction was 368 mm (52%) below the observed maximum while the deviation
for the Gumbel method prediction was 203 mm (28%) (the smallest) below the observed maximum
and 234 mm (337%) below for the Pearson type III prediction. The Gumbel method gave a
higher predicted value for long return periods than the other five models, but the Pearson
type III predicted extreme snowfall with the smallest deviations from the observed values
for all but the greatest return period. This contributed to the higher R2 value for the
Pearson type III, which identified it as the best overall model for fitting the extreme
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Table 2. Percent of Stations When the Coefficients of Determination (Rz) of the
Six Probability Models Were Ranked by Ascending Ordersl/, and Total

Value of Ranks for Each Distribution.

Model Rank of RZ Total value

6 5 4 3 2 1 of ranks
?éarson type IIT 61.1 22.2 0.0 5.6 5.6 5.6 92
Gumbel 22.2 38.9 33.3 5.6 0.0 0.0 86
Log-normal 5.6 33.3 22.2 11.1 5.6 22.2 70
Cube~root normal 0.0 5.6 27.8 33.3 33.3 0.0 56
Gamma ' 0.0 0.0 11.1 bbb 38.9 5.6 47
Lieblein 1.1 0.0 5.6 0.0 16.7 66.7 34

1
—/Ranks 6 and 1 are the highest and the lowest R? values, respectively.

Table 3. Probability Levels of Friedman's Analysis of Ranks.

Log-

Cube~

Model Pearson  Gumbel normal  root Gamma
Gumbel 0.66
Log-normal >0.99 0.66
Cube~root normal >0.99 >0.99 0.84
Gamma >0.99 >0.99 0.94 0.84
Lieblein >0.99 >0.99 0.94 >0.99 >0.99

daily snowfall in West Virginia.

The goodness of fit of the Pearson type III and Lieblein
methods for the extreme snowfall at Glenville and London Locks is shown in Figure 2.

THE REGIONALIZED PREDICTION .EQUATION

Based on data computed by the Pearson type III distribution model at the 18 stations,

the equatien derived for predicting the extreme snowfall (S, in mm) of different return

periods (Ti in years) at ungaged locations in West Virginia was in the form:

(0.0742%Z + 0.1871%¢ + Ti)

S = 0.2240e
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Figure 2. Goodness of fit of the Pearson type III
and Lieblein methods to the observed
extreme snowfall at Glenville and London
Locks.

where Z and ¢ are station elevation in hundreds of meters and latitude in degrees,
respectively, and e is the base of natural logarithms. Equation 3 is a covariance-analysis
model, with T, used as a classification parameter. Values of T, for six different return
periods are sﬁown in Table 4, and the solution of Equation 3 can be read directly from
Figure 3.

Equation 3 accounted for about 95% of the variability of the extreme snowfalls with an
average absolute error of 53 mm or 16.5% of the mean. The residuals ranged from <1 mm (25-
year snowstorm) at Parkersburg to 328 mm (100-year snowstorm) at Glenville, and 77% of the
residuals were below 75 mm. The percentage of average absolute error was about identical
among all return periods.

It is well known that the probability of precipitation in mountainous areas is
enhanced by the orographic effects of mountain barriers on air mass lifting, cooling, and
condensation processes; the lower air temperature at higher elevations increases the
probability that precipitation will oeccur as smowfall. Results of the present study, as
indicated by Equation 3 that extreme snowfall increases with elevation and latitude, agree
with our expectation. In West Virginia the effects of 100 m in elevation were about equal
to 0.40° in latitude. However, since no extreme snowfall samples from above 730 m were

41



Table 4. Values of Classification
Parameter (Ti) for Six
Different Return Periods.

Return period, years Ti
2 -1.1537
5 -0.6904
10 -0.4687
25 ~-0.2483
50 -0.1116
100 0.0000

Latitude (deg) 37

n
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Figure 3. Nomograph for estimating extreme snowfall
of different return periods in West

Virginia.
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used in the statistical analysis, applicability of the prediction equation at higher
elevations is questionable.

The prediction equation is unique for its simplicity (i.e., it uses only two
geographic parameters, which can be easily obtained from a topographic map),
predictability, and plausibility. It is believed that the model can be applied for
analyzing extreme snowfalls in other humid areas where winter precipitation is
characterized by snowfall.

CONCLUSIONS

Among the six distribution models tested for their goodness of fit to the extreme
snowfalls at 18 stations in West Virginia, the Pearson type III method was the best overall
model, and the Lieblein was the poorest. No significant differences were found between
Pearson type III and Gumbel, Gumbel and log-normal, log-normal and cube-root normal, and
cube-root normal and gamma models. The extreme snowfalls of different return periods,
computed by the Pearson type IIT method, can be accurately estimated using only statiom
elevation and latitude in a multiple covariance analysis. It is believed that a similar
model can be developed for other mountainous humid areas where winter precipitation is
characterized by snowfall.
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