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ABSTRACT

A numerical model for simulating thermal-ice conditions in a natural river is
developed with emphasis on its application to the growth and decay of the ice cover. The
model treats the river as a coupled air-ice-water-river bed system taking into consider-
ation the heat exchanges at all interfaces in the system. The heat conduction in the ice
cover is represented by a one-dimensional, quasi-steady state approximation. The temper-
ature distribution in the water is formulated by the longitudinal dispersion equation. The
model is applied to simulate the ice cover thickness in a reach of the upper St. Lawrence
River. Numerical results show good agreement with field data. '

INTRODUCTION

Determining the thickness of a river's ice cover is an important aspect of ice
engineering. The change of ice cover thickness is governed by heat exchange processes at
the top and bottom surfaces of the ice cover. By considering the heat exchange between the
ice surface and the ambient atmosphere as the dominating factor, a degree-~day method has
long been used in establishing ice thickness estimations. In the degree-day method the ice
thickness, 6, is related to the cumulative freezing degree-day of the air temperature, S,
by Eq. 1 (Michel, 1971; Pivorarov, 1973).

1/2
s S (D
Since many simplifications were introduced in deriving Eq. 1, the constant o_ has to be
determined for each location based on historical data (Williams, 1963).

In view of the limitations of the degree~day method, deterministic numerical models
have been developed to simulate thermal-ice conditions to provide additional insights and
better representation of the phenomena.

The thermal growth and decay of an ice cover is affected by the meteorological con-
ditions; the thickness of snow cover; the temperature of the underlying water; the possible
accumulation of frazil ice or ice fragments on the underside of the ice cover; and thermal
properties of the ice cover. A few numerical models exist for simulating the thickness of
an ice cover in surface water bodies. Maykut and Untersteiner (1971) developed a one-
dimensional thermodynamic model for sea ice that considers effects of snow cover, ice
salinity, and internal heating due to the penetration of solar radiation. Sydor (1978)
presented a model for ice growth in the Duluth-Superior Harbor. Wake and Rumer (1979)
developed a numerical model for Lake Erie which is capable of simulating the thermal-ice
regimes of large shallow lakes.

Simulation models for sea ice and ice covers in large lakes provided significant
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advances in modeling thermal-ice conditions in surface water bodies. However, due to the
differences in heat exchange processes involved, a model for simulating the thickness of
river ice covers was needed. Greene (1981l) recently developed one-dimensional simulation
models for ice cover thickness in the upper St. Lawrence River. 1In Greene's report, two
models involving different approximations were presented. 1In his analytical model, a
linear temperature gradient in the ice cover was assumed. Turbulent heat exchanges on both
sides of the ice cover were neglected during the growth period. During the melting period,
however, turbulent transfer at the bottom surface of the ice was included. 1In his
numerical energy balance model, the turbulent heat transfer from the river water to the ice
cover was not considered. Measured water temperature and shortwave radiation data were
used together with meteorological data by Greene in analyzing energy exchanges through the
ice cover. Snow cover effects were included in the model but were not found to be
important.

In the present paper, a numerical model for the thermal-ice regime of a river with an
ice cover is developed. This model treats the river as a coupled air-ice-water-river bed
system taking into consideration the heat exchanges at all interfaces in the system. The
heat conduction in the ice cover is represented by a one-dimensional, quasi-steady
approximation. The temperature distribution in the water is formulated by the longitudinal
dispersion equation. The model is used to simulate the growth and decay of the ice cover
in a 28-mile reach of the St. Lawrence River between Iroquois Dam and the Moses-Saunders
Power Dam, Fig. 1. Computed ice thickness values were found to compare favorably with
field observations.

HEAT EXCHANGE PROCESSES

In this section, a brief summary of the various heat exchange processes considered in
the simulation model will be presented.

Energy Exchanges at the Air-Ice or the Air-Water Interfaces

The surface heat exchange process consists of five major components: 1) net solar
(shortwave) radiation, ¢4; 2) longwave radiation, ¢p; 3) evapo-condensation, ¢.; 4) sensi-
ble heat exchange, ¢.; and 5) precipitation, ¢ . Since snow cover is not included in the
model and the ice surface is considered to be well-drained, the component ¢p is not
considered in the present model.

s s -2 -1 .
Shortwave Radiation. - The net solar radiation ¢s’ cal-cm “-day =, can be written as

¢, = (1-a) [a=b($=50)] (1-0.0065 ¢?) = (-, 2)

in which, ¢4 = incoming shortwave radiation, cal—cm_z—day-l; ¢ = latitude in degrees; C =
cloud cover in tenths; and a,b = constants which represent variations of the solar
radiation under clear sky (Paily, et. al. 1974). The albedo o is approximately equal to
0.1 for the water surface. For the ice surface, the value of the albedo o in Eq. 2 is
dependent on the material behavior of the ice cover. Based on empirical curves developed
by Krutskih, et.al. (1970) for snow-free sea ice in the Artic, Wake and Rumer (1979)
proposed the following expressions:

o, 5 for Ta < 0°C
a = { -vT
o + (a,-o ) e ; for T > 0°C
a i a a —

(3)

in which, Qs Oy and Y are empirical constants and T, = air temperature in degrees
celsius. Bolsenga (1969) reported values of albedo for Great Lakes ice covers. Bolsenga
(1969) also observed that the albedo varies with surface temperatures, and for uneven
surfaces the albedo also varies with solar latitude. In the present study, Eq. 3 with
oy = 0.41, oy = 0.25, and ¢ = 0.7 is used to calculate o for ice covers in the upper St.
Lawrence River.

The penetration of shortwave radiation into the ice cover can be considered as an
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internal heat source. The vertical distribution of the intensity can be described by the
Bouguer-Lambert exponential law (Shishokin, 1969; and Pivovarov, 1973).

b6 = ¢_ e (4)

in which, ¢, = intensity of the shortwave radiation at depth z; T4 = extinction coefficient
which varies between 0.004 cm™! and 0.07 em=l. A value of T4 = 0.07 em™! is used in this
study. Based on Eq. 4, the amount of shortwave radiation which penetrates into the water

underneath the ice cover is

-1.6
1

¢ =B, ¢_ e 5

in which, Bi = fraction of absorbed solar radiation which penetrates through the ice-water
interface. Due to the small difference in the refractive indices of ice and water, the
value of B4 is taken to be 1.0 (Perovich and Grenfell, 1982).

Longwave Radiation. - The longwave radiation is the combination of the longwave
radiation emitted from the water surface or the ice cover, bhg and the net atmospherical
thermal radiation absorbed by the water body, TN

Based on the Stefan-Boltzman law of radiation, modified to account for the emissivity
of body surface, ¢4 can be represented by
4

¢bs &0 Tsk (6)

in which, o = the Stefan-Boltzman constant, 1.171 x 10—7 cal-cm-zwclay_1 °K” 3 T = water
or ice surface temperature, °K; and € = emissivity of the surface assumed to be 0.97 for
both the water and the ice surfaces.

The atmospheric radiation, ¢,, can be represented by Eq. 7 (Paily, et. al. 1974).

4 2
by = 0 T (e d/E;) (1 +k_ €9 (7
in which, e, = vapor pressure of air at the temperature T, , mb; and ¢ and d = empirical
constants equal to 0.55 and 0.52, respectively, Tak = air temperature, °K, kc = empirical
constant approximately equal to 0.0017. Considering that the reflectivity of the ice or

water surface is 0.03, the net atmospherical radiation is

o, = 0.97 o, (8)

in which, ¢p, = net atmospherical radiationm, cal—cm—z—day_l. Combining Eqs. 6 and 8 the
effective back radiation becomes

= -7 4 2 . 4
by = bpgdp, = 1-1358x107° [T - (l+k C )(c+a/5; L (9)
in which, ¢b = effective back radiation, cal—cm_z—day_l.
Evapo-Condensation Flux. - The heat flux from the water or ice surface due to evapo-

condensation, $e»> can be estimated by using the Rimsha-Dochenko formula (Pailey, et. al.,
1974)

¢e = Ce (1.56 Kn + 6.08 Va)(es - ea) (10)

in which, ¢, = rate of heat loss due to evaporation, cal—cm—z-day_l; V, = wind velocity at
2 meters above the water surface, m/sec; ey = saturated vapor pressure at temperature Tg;

Ce = a coefficient account for the suppression effect of ice cover and K, = a coefficient

accounts for the effect of free convection determined by Eq. 1l1.
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K o= 8.0 + 0.35 (TS - Ta) (11) t

in which, T4 and Ty = river surface temperature and air temperature at 2 meters above the
water surface, °C.

Conductive Heat Transfer. — The energy conducted from the water surface as sensible
heat by air can be determined by the Rimsha-Donchenko formula (Paily, et. al. 1974).

9, = Cu (K +3.9V) (T -T) ; (12)

. -2 -1 -
in which, ¢, = rate of conductive heat loss, cal-cm "-day ~. Similar to the evapo- :
condensation flux, a coefficient CC is introduced in Eq. 12 when the river surface is !
covered by ice. 1

Turbulent Heat Transfer from Water to the Ice Cover

The turbulent heat transfer from the flowing river water to the ice cover has sig-
nificant effects on the thickness of an ice cover (Ashton, 1973). The heat flux from the
water to the ice cover can be represented by

qwi - hwi (1w - 1f> (13)
in which, qy 4 = heat flux from the water to the ice cover; hwi = heat transfer coefficient, %
cal-cm—2-day=-l °c™*; T,, = water temperature, °C; and Ty = the freezing point, 0°C. The !

turbulent heat transfer coefficient can be evaluated by the following formula (Ashton,
1973, 1979; Haynes and Ashton, 1979):

U3.8
hwi - cwi DO.Z (14)
. . . -0.2 -2.6
in which, Uy = flow velocity, m/sec; D = flow depth, m; and Cwi = 1622 W sec -m

oc..l

.

Bed Heat Influx

In ice-covered rivers the heat exchange at the bed, q,,, is an important component of P
the river's heat budget. O0'Neil and Ashton (1979) developed a procedure for analyzing heat i
transfer at the channel bottom by considering one-dimensional heat conduction in the
channel bed. Using this method, Shen and Ruggles (1982) evaluated the bed heat flux in
the upper St. Lawrence River. The result of Shen and Ruggles (1982) is used in the present L
analysis.

PROBLEM FORMULATION

A river ice cover can be considered as a long ice slab floating on a flowing stream. |
The thermal growth and melting of the cover can take place on both sides of the ice cover. |
These processes are governed by heat exchanges at both the ice-air and the ice-water
interfaces. 1In local regions of fast flowing velocity, open-water areas exist in the
river. During periods of supercooling, these open-water areas produce frazil ice which
can then accumulate on the undersurface of the ice cover. Both the accumulation of frazil !
ice and the existence of snow cover on the upper surface of the ice cover can influence the
heat exchange through the ice cover. Calkins (1979) has shown that these effects can be
accounted for by adding appropriate layers to the ice cover. In the present study, how-
ever, only the ice cover is considered.

Growth and Decay of the Ice Cover

Fig. 2 shows schematically heat transfer processes through the ice cover. The growth
and decay of the ice cover is assumed to be governed by the one~dimensional heat conduction
across the thickness of the ice cover. The ice surface is assumed to be well-drained
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during the melting period. As a consequence, the growth of ice cover is assumed to take
place only at the ice-water interface.

The one-dimensional heat conduction in the ice cover can be described as

OT _ 3 2T
0505 5t T 3z (ky 3 T A (1) (15)

in which, p; = density of ice, 0.92 g/cm3; C; = specific heat of ice, 1.0 ca1~g_1—°C; ky =
thermal conductivity of ice, 0.0053 cal/cm-s-°C; A = rate of internal heating per unit
volume due to the adsorption of shortwave penetration; T = temperature in the ice cover,
°C; and z,t = space and time variables. At the upper boundary, the boundary condition is

3T ds
kK, =— =12¢, - p.L, o— at z =0 16
i dz 94 7 P3Gt ’ (16)
in which, Z¢4 = net heat loss rate at the air-ice interface; Li = latent heat of fusion of

ice, 80 cal/g; 6 = thickness of the ice cover, cm. Similarly, the boundary condition at
the lower boundary is

i 32 = Gy T Pily g% ;oatz =96 (7
in which, q,; = net heat flux from water to the ice cover. The boundary value problem
defined by Eqs. 15-17 is a nonlinear problem, which can be solved by finite-difference
techniques (Greene, 1981; Goodrich, 1975). 1In the present study, however, the time-
dependent ice growth and decay at each station along the river is approximated by a one-
dimensional, quasi-steady state calculation at each step. A linear temperature distri-
bution over the thickness of the ice cover is assumed. Eq. 15 can be approximated at each
time step by Eq. 18.

= 3 (18)

Longitudinal Distribution of Thermal Energy in the Water

Under the consideration of complete mixing over the channel cross section, the conser-
vation of thermal energy in a river reach can be represented by a one-dimensional con-
vection-diffusion equation. For water temperature above freezing, this equation can be
written as (Brocard and Harleman, 1976).

3T
W

N
J

IX

[e%3

) + BI¢ (19)

>

(prpATw) +

2

t

[§

3
(prcpTw) a §§'(AEx”pr 3%

in which, A = cross-sectional area of river; B = channel width; Q = river discharge; Py =
density of water; Cp = specific heat of water; E, = longitudinal dispersion coefficient;
x = distance along the river; and I¢ = net heat influx per unit surface area of the river.
The surface heat loss from the water surface could induce the ice cover formation. In the
fast flowing reach, however, the water surface will remain open. Frazil ice produced in
open-water regions during supercooling periods will be transported downstream. In the
present study, the existence of an initial ice cover and an open-water reach will be
assumed. It is also assumed that the leading edge of the ice cover will not progress up-
stream in the fast flowing reach when the flow velocity exceeds 60 cm/sec. In the case of
a frazil-laden river, Eq. 19 can be written in terms of the frazil ice concentration Cis
instead of water temperature, T, by recognizing that the thermal energy per unit volume
of water-ice mixture is -04LiCq, which is equivalent to the term chpTw in Eq. 19.

The term I¢ in Eq. 19 consists of heat exchanges at the upper surface of the water and
the heat influx from the channel bottom. The initial and boundary conditions for Eq. 19
are

T(x.0) = g(x) (20)
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T(0,t) = TL(t) 21

and

in which, g(x) = a given distribution of initial water temperature in the study reach;

Ty () = a known time history of the water temperature at the upstream end of the reach,
usually obtained from field measured winter temperature record; and X = total length of the
study reach. Eq. 22 is a good approximation when the downstream end is a dam where the
dominant portion of the heat flux is the convective term.

METHOD OF SOLUTION
In this paragraph various parts of the computational model are discussed.

Temperature and Rate of Melting at the Upper Ice Surface. - Using the boundary

condition at the air-ice interface, Eq. 16 and'ﬁq. 18, the heat balance at the air-ice
interface gives:

—liU Tf—TS
1-Be + - - - - + K, ————
¢s (1-pe ) pba ¢br ¢bs ¢e ¢c Kl 0
- O ; rl'l < OO(: (25)
5
LU%
=iy 3 Ty 0 21
“ili nHt ’ ls 0 (24)
in which, AU, = change in ice thickness at the upper surface during the period ft. In lq.

24, it is assumed that the ice surface temperature is equal to 0°C during the active
thawing period. Eq. 23 is a nonlinear equation which may be solved by the Newton-Raphson
method (Goodrich, 1975). In the present study, a simple linearization procedure sugpestoed
by Wake and Rumer (1979) is used and gives satisfactory results. By this method, kq. 23
is approximated at each time step by Eq. 25 which can be solved explicitly for T%.

. (k-1)
(k~1) -7 .0
U A TN (k) 00 _ (k) _ (k1)
ls - Ki LCl=pe ) ¢s + Pba ) ¢br q)bc; (Is )
p(k=1) L (k=1) o
=y (1T = T (25)

in which, variables with superscripts (k) or (k-1) represent their values at time levels
kat and (k-1)At, repsectively. If the value of Ték) calculated from Eq. 25 is greater than
0°C, then Eq. 24 is used to determine the rate of ice melting at the air-ice interface.

Growth and Decay at the Bottom of the Tce Cover. - From Egs. 17 and 18, the heat
balance at the ice-water interface is

T.~T s At w
¢, et =p.L, Y 26
Ky 7% Ayi = Py at (26)

in which, AGy = change in ice thickness at the bottom of the ice cover during cach time
step. The change in ice thickness at the k-th time step can be calculated as:

p ()
(k) At f's oK) -
6o " = ool (K, (D) hop (T07-To)] (27)
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Water Temperature Distribution. - The time-dependent distribution of water tempera-
ture or frazil ice can be determined from the solution of the boundary value problem
defined by Eqs. 19-22. The heat source term, L¢, can be calculated by Eqs. 28 and 29.

Ay = Yy + ¢sp 5 with ice cover (28)

Il

Lo

I¢ = q t b =6 =9, - 0 ;  without ice cover (29)

ew c
Various numerical techniques exist for solving one-dimensional dispersion problems in
rivers. A collocation-finite element scheme using Hermite cubic basis function developed
by Papaspyropoulos, et. al. (1982) is adopted in the present model.

SIMULATION OF THE ST. LAWRENCE RIVER ICE COVER THICKNESS

The numerical scheme described in the preceeding section is applied to a 27.8-mile
reach of the St. Lawrence River between the Iroquois Control Dam and the Moses-Saunders
Power Dam. This reach of the river is shown in Fig. 1. Due to the high flow velocity, an
open-water reach usually exists at the upstream and of the study reach extending from the
Iroquois Dam to a point near Pinetree Point. In the numerical scheme the whole study reach
is divided into 100 subreaches, which result in a total of 101 nodes for the water tempera-
ture distribution and ice cover thickness. The time~dependent flow distribution may be
obtained from measured discharge records at the Iroquois Dam andthe Power Dam or numerical
models for hydraulic transient analysis (Yapa, 1983). In the present study, a constant
discharge of 225,000 cfs is assumed for simplicity. Surface heat exchanges are calculated
by using weather data recorded at the Massena Airport. All the weather data are inputed at
4-hour intervals. A time increment of one day is used in the finite-element solution of
the convection-diffusion equation. Numerical simulations for ice cover thickness are
carried out for the winter of 1977-78 starting from Jan. 17, 1978 until the break-up of ice
cover. The computing time for each simulation run on an IBM 4341 computer is less than
90 sec.

Numerical Results

Since the ice cover in the study reach usually consists of accumulations of brash ice
with snow, a value of 0.41 is assumed for the ice cover albedo, a4, according to the
observation of Bolsenga (1969). Little is known about the magnitude of the reductions in
evapo-condensation and sensible heat transfer due to the ice cover, a value of 0.5 is
assumed for both coefficients C; and C.. Simulated ice thicknesses are compared with field
measured values provided by the St. Lawrence Seaway Authority. Field measurements were
made at four stations located in the shipping channel, which is usually the deepest part of
the river channel, Fig. 1. A comparison with the simulation for Station E2 is shown in
Fig. 3. The simulated ice thickness is considered to be the average thickness of the ice
cover over the width of the river. Although the simulated thickness history represented
by continuous curves did not pass through all measured data points, the agreement between
the two is considered to be very good, since the measured ice thickness at a station can
often deviate appreciably from the average ice thickness (Amineva, 1978). The simulated
break-up date compared well with the actual break-up date. Large deviations between the
measured and simulated values at Stations Fl and El during the period of ice cover
deterioration are not surprising if one notices the non-uniformity in river ice cover thick-
ness and the changing texture of the ice cover during that period. It is of interest to
point out that the rate of change of ice thickness generally decreases as ice thickness
increases. A comparison between the ice thickness and the water temperature data
show that the break-up of ice cover was triggered by a sudden decrease in ice thickness
due mainly to the warming of the river water by a few tenths degrees celcius.

SUMMARY AND CONCLUSION

In this study a numerical model is developed for Simulating thermal growth and decay
of a river ice cover. 1In this model the river is treated as a coupled air-ice-water-river
bed system. Heat exchanges at all interfaces between air, ice, water, and the channel bed
are included in the formulation. Accumulations of snow and frazil ice on surfaces of the
ice cover are not considered. The heat transfer through the ice cover is approximated by
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a one-dimensional, quasi-steady heat conduction analysis in the vertical direction. The
distribution of the thermal energy in the river flow is formulated by the one-dimensional
longitudinal convection-diffusion equation.

The model is applied to a reach of the St. Lawrence River between Iroquois Dam and the
Moses-Saunders Power Dam. Comparisons between the simulated results and the field data
show that the numerical model can simulate both the growth/decay of ice thickness and the
break-up date of the ice cover with good accuracy. The simulated results also show that
the warming of the water temperature at the end of the winter is a very important factor
in triggering the deterioration of ice cover. This observation suggests that the thermal
dissipation rather than mechanical destruction is the main factor which governs the break-
up date in the study reach. This also shows the need of accurate measurements of water
temperature at stations along the river in order to accurately forecast the cover break-up.

Due to the great uncertainties involved in the selection of ice surface albedo, 0qs
evaporation flux constant, Cg, and sensible heat flux constant, Co, additional studies are
needed in order to better quantify these parameters. Further refinements to include the
effect of snow cover, the transport and accumulation of frazil ice, and the effect of
frazil ice accumulation may be made to improve the versatility of the present numerical
model.
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