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ABSTRACT

A method for predicting snowpack water equivalent (SWE) was developed for New York and New England
using variables available at National Cooperative Observer (Co-Op) collection sites. Summary of the day statistics
from National Weather Service Offices (NWSO) were used to create statistical regression models. These equations
were successfully tested on Co-Op snow survey data. A new variable, Maxinrow, the number of consecutive days
with a maximum temperature less than freezing, proved slightly superior to degree-day variables. The models will
allow the ground-based snowmelt data network to increase from 15 NWSOs and a handful of research sites to over

500 locations in the Northeastern United States at virtually no additional expense to prospective users.

INTRODUCTION

In New England and New York, spring floods, agricultural water supplies, and reservoir levels are problems
where snowmelt plays an important seasonal role. Efforts at forecasting water quantities by predicting snowmelt
range from simple degree-day models (Kuz'min,1961) to multiple regression (U. S. Army Corps of Engineers
{USACOE}, 1956, Garstka et al., 1958) involving elaborate arrays of collection sites. Although Zuzel and Cox
(1975) found temperature alone, if necessary, to be an adequate predictor, precipitation, relative humidity, wind,
and snowpack water equivalent (SWE) are the minimum parameters needed for the various multivariate approaches
to snowmelt prediction. More recently these point collection techniques have been superceded, in part, by gamma

radiation detection overflights (Carroll & Carroll, 1989) and satellite-based remote sensing (Dozier,1987).

_ Despite the trend toward more complex techniques there is still a place for point measurements. Ground based ~ *

observations could be used to verify remote sensing techniques, and to continue providing primary input into
models determining basin snowmelt characteristics (e.g.; Anderson, 1973 and Fleming, 1975). One of the main
problems with point measurements is simply the small number of observing sites where sufficient data for predicting
snowmelt is recorded. An increase in the number of these locations could significantly improve the accuracy of the

prediction models.
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Butde and Xu (1988) demonstrated that a simplified but effective method for calculating snowmelt in Southern
Ontario was to observe SWE from one day to the next. If no precipitation fell the difference in SWE was simply
snowmelt. Although this neglected sublimation of and evaporation from the snowpack, those events were
considered to be inconsequential, at least on a daily basis. Presently, only National Weather Service Offices
(NWSO0), of which there are 15 in New York and New England, and a few research locations actually determine
SWE on a daily basis.

Volunteers with the National Cooperative Observer Program (Co-Op), an underutilized network composed of
approximately 250 sites in New York and 250 sites in New England, do not melt the snowpack on a regular basis,
but do record daily precipitation, snowfall and temperatures. It would be worthwhile to add information from this

network into the dataset used by snowmelt researchers.

The purpose of this investigation was to develop a method for predicting SWE from NWSO data, using only
predictors available at Co-Op stations. The resulting models could then be applied to Co-Op data, thereby

augmenting the sampling network and providing additional snowmelt information for concerned interests.

THE EQUATIONS OF SNOWMELT
The starting point for all snowmelt research is the snowpack energy balance equation (after Kuz'min, 1961 and
Fleming, 1975),

1) Wr+Wk+We+WS+Wh+Wb=0

where all units are in Joules/mz—day and
W, = radiative heat transfer
W), = sensible heat transfer with the atmosphere
We = latent heat transfer with the atmosphere
Wy = soil heat transfer
Wy, = heat transfer which changes snow temperature

Wy, = heat expenditure to melt snow (or freeze water)

If the heat expenditure to melt snow (W},) is brought over to one side of the equation, the sum of the other terms, if

positive, indicates heat available for melting snow.

The data at Co-Op sites do not directly measure the components of the energy equatlon These cncumstances

require any model developed to rely heavily on the water balance approach
2)  SWEepq - SWEjitia1 =S + R - M - Sub - Evap

where all values are in inches and
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" SWE = values of the water equivalent at specific times

S = new Snow
R =rain
M = snowmelt (the water expressed at the bottom of the pack)

Sub = sublimation from the snowpack
Evap = evaporation of the melted snow in the pack
Neglecting sublimation and evaporation leaves the simple relationship involving precipitation input, melt, and the

corresponding change in SWE, as demonstrated by Buttle and Xu (1983).

Because of the ability of rain to both enter and melt the snowpack, separate equations have been developed

which predict snowmelt during rain on snow events. One example (after USACOE, 1956) is

3) M =(0.00695 °F1) (T, - 32) P,

where
M =meltininches
T, = temperature of the rain (°F)
P, = precipitation in inches

MODEL DEVELOPMENT
A) Data Preparation

National Weather Service Offices have included SWE in their daily climate data summaries since the early to
mid 1950's. Maximum and minimum air temperatures, snowfall, and precipitation are reported for the midnight to
midnight period, the depth of the snowpack is measured every morning at 7:00 a. m. E.S.T. (12:00 UTC), and
reported if greater than two inches (5 cm), and the SWE is measured at 1:00 p. m. E.S.T. (18:00 UTC).

Figure 1 shows the location of the 15 National Weather Service Offices in New York and New England. Table

1 describes the length of record used in this study for each NWSO.

Schmidlin (1990), investigating several NWSOs in Indiana and Ohio, described some problems with these
datasets ranging from typographical errors to physically impossible values. For this work obvious keypunch errors
were corrected, while lapses in continuity or logic caused the entire observation to be omitted. These lapses
typically involved dramatic changes in SWE not justified by additional snowfall or rainfall, or by temperature
extremes. Removed observations amounted to a very small percentage of the 30 to 35 year datasets. As a worst
“case, 3 of 138 days with greater than two inches of snow on the ground at LaGuardia Airport in-New York City

were omitted from 33 years of January observations.
Because the purpose of this work was to predict the amount of SWE, it was important not to consider any
predictors whose daily values could be affected by events occurring after the afternoon SWE measurement. For

example, the maximum temperature for a given day probably occurs after the SWE measurement. The preceding
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day's maximarm temiperature was, therefore; included in the tnitial \pTBdiCT."(‘)I‘ fist. Figure 2 shows the dming of these

and other variables.

The 6 hour window where snowdepth could change after being measured and before SWE is determined
introduces a potential source of error into the model. The measured snowdepth, however, still precedes the SWE
measurement and may be used as a predictor. Since snowfall and precipitation can occur in the eleven hours
between the SWE measurement and midnight they could not be used to predict SWE on the same date. To ensure
the purely predictive nature of a model, it was decided to use the preceding 24 hour precipitation (Oldppt) and

snowfall (Oldsnfl) amounts, and the morning snowdepth as possible predictors of the afternoon SWE.

The U. S. Army Corps of Engineers (1956) and Garstka et al. (1958) used such variables as relative humidity
and wind in their regression analyses. Since these variables are not measured at Co-Op stations, an attempt was
made to create variables which could furnish some extra information to a prospective model. For example, many
researchers have reported daily snowmelt as a function of cumulative degrees greater than a base temperature.
Conversely, cumulative degree days less than a ceiling temperature could provide a measure of the cold content of
the snowpack, indicating the heat required to raise the snowpack to the freezing point and then to ripen, or satisfy

the free water holding capacity of the snow.

For this work cumulative melting degree days (Cummdd) were calculated for days when the maximum
temperature exceeded 32° F. The cold indicator was named Maxinrow, or the number of consecutive days when the
maximum temperature was less than 32° F. Similar variables for minimum and mean temperature were developed,
for consecutive cold days and also for warm days. Hotmax was the number of consecutive days with a maximum

temperature greater than 32° F.

Snowdepth and temperature information for the day before the day of the prediction were included in the
predictor list to investigate if previous information about the snowpack and temperature conditions would be useful.

Table 2 gives a list of potential predictors used in model development.

B) Exploratory Model Building and Final Models

Binghamton, NY was arbitrarily selected to be the first station used in model development. January days were

used which did not follow a day when rain fell. Rain on snow days amounted to approximately 5% of all
observations and were reserved for later analysis. Half of the remaining data were reserved for use in verification of

the model. These were simply alternate observationg in the dataset.
~The-initial predietor-list-was reduced with-a stepwise selection procedure (p. 430-ff;; Neter et al.; 1985) using
SWE as the dependent variable. The variable selection procedure initially yielded snow depth (Snowdepth),

Maxinrow, yesterday's snowfall (Oldsnfl), and yesterday's precipitation (Oldppt) as predictors for Binghamton.

Standardized residual analysis of the multiple regression results was used to determine if errors were normally
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Table 2. Potential predictors used in model building. -

Predictor Abbreviation
Maximum temperature Max
Minimum temperature Min
Mean temperature {(Max + Min)/2} Mean
Previous day's precipitation Oldppt
Previous day's snowfall Oldsnfl
7:00 a.m. snow depth Snowdepth
Square root of snow depth Sqrtsndp

Cumulative melting degree days
(the running total of (Max - 32°F.),for

successive days with Max > 32°F.) Cummdd
Consecutive days with Max < 32°F. Maxinrow
Consecutive days with Max > 32°F. Hotmax
Consecutive days with Min < 32°F. Mininrow
Consecutive days with Min > 32°F. Hotmin
Consecutive days with Mean < 32°F. Meaninrow
Consecutive days with Mean > 32°F. Hotmean
Previous maximum temperature Oldmax
Previous minimum temperature Oldmin
Previous mean temperature Oldmean
Previous snow depth Olddepth
Max - Min Range

Table 3. January models for 15 NWSOs in New York and New England. The dependent variable is sqrtSWE.

dataset r-squared (%) RMSE  constant snowdept sgrtsndp maxinrow  oldsnf] oldppt

Albany 75.1 0.204 0.156 0.028 0.284  -0.005 -0.078 0.524 ~
Binghamton 64.4 0.239 0.143 0.037 0.295 -0.014  -0.073 0.398 .
Boston 75.0 0.176 0.123 0.021 0.303 -0.020  -0.057 0.426

Bridgeport 62.9 0.155 0.425 0.067 0.023 -0.017 -0.046 0.261

Buffalo 71.6 0.272 0.210 0.036 0.231 -0.012 -0.054 0.299

Burlington 67.8 0.223 -0.007 0.000 0.383 -0.007 -0.049 0.295

Caribou 64.9 0.341 -0.221 -0.025 0.586  -0.007 -0.043 0.427

Concord 47.3 0.333 -0.745 -0.110 1.027 0.001 -0.053 0.411

Hartford 58.2 0.243 -0.195 -0.046 0.637 -0.012  -0.049 0.248

LaGuardia NYC 85.7 0.081 -0.044 -0.005 0350  -0.004  -0.051 0.549

Portland™ ~66.8 0306 0.134 0.020  0.353 -0.031  -0.060 0.280

Providence 43.5 0.181 0.116 -0.028 0.394 0.010 -0.039 0.235

Rochester 59.1 0.245 -0.154  -0.024 0.551 -0.011 -0.064 0.563

Syracuse 55.2 0.263 -0.053 -0.006 0.422 0.002 -0.076 0.668

Worcester 62.6 0.223 0.299 -0.004 0.302 -0.009  -0.046 0.350
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distributed or whethier tansformations of the vartables would be necessary (pr 11 £, Newereval;; 1985)-Residual
plots indicated increasing variance of predicted SWE as snowdepth increased. This suggested the need for a
transformation of SWE. A test after Box and Cox (p. 225 ff., Draper & Smith, 1981) indicated a square root
transformation would make the variance nearly constant, thereby making the root mean squared error (RMSE)
representative of the entire data range. Rerunning the selection procedure using the square root of SWE (sqriSWE)
produced the same predictors, but yielded curvature in the residuals when plotted against snowdepth. This implied
the need for an additional predictor term, and the square root of snowdepth (sqrtSndp) was added to the model. The

resulting regression yielded normally distributed residuals with essentially constant variance.

The calibrated model was verified with the reserved half of the dataset. RMSE and the coefficient of multiple
correlation (Rz) were compared for the two dataset halves. Since both were within 5% of one another the halves
were combined, regression analysis was rerun, and the result was the final model for January days with snow on
the ground except those preceded by a day with rain. The same predictor variables were used for all 15 New York
and New England stations, with separate parameter estimates for each station. At this point 15 models for January
existed. Table 3 shows the equation, the RMSE, and the R2 for each station using January as an example. The R2
indicates that between 44% and 87% of the variation in sqrtSWE was described by the models. Models using the

same variables were also developed for December and February, with virtually the same range for RZ and RMSEs.

Slope and intercept models with dummy variables is a method which can be used to group many stations and
test whether one parameter estimate per variable is suitable for all stations in the group (p. 339, Neter et al., 1985).
This analysis can create a family of parallel lines with separate intercepts for each station, when the intercepts are the
only parameter estimates which differ between stations. If successful, the result is one model with more general

application possibilities than the individual station models.

Groups were subjectively formed which encompassed stations sharing geographic and topographic similarities,
and are outlined in figure 3. The main groups checked included Coastal (Portland, Boston, Providence, Bridgeport,
LaGuardia-New York City), Mountain (Caribou, Concord, Burlington, Albany, Worcester, Hartford), and Western
New York (Buffalo, Rochester, Binghamton, Syracuse). The 15 stations were also combined into a Total group.
As an example, table 4 shows Rz, RMSE, station intercepts, and the parameter estimates for the January mountain

group. Rain on snow days are included by adding a correction factor to the calculation.

The procedure was repeated for the other winter months of December and February, and individual and
grouped models were developed. Grouping across months (January and February, and also the three winter months
_ of December, January and February) resulted in two additional sets of models. Table 5 shows the three month
winter model for all 15 stations. This grouping procedure not only creates separate intercepts for each station, but
also correction factors for month, and for those 5% of all observations which followed a day where rain fell on

snow. More than 70% of the variation in sqrtSWE is still being described by the model.
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Western New York

Figure 3. Divisions for grouping NWSOs.

Table 4. January mountain grouping, showing station intercepts,
parameter estimates, rain on snow correction factor, and statistics,
including probability of a greater t-ratio.

Intercept Estimates  s.e.estimate t-ratio prof >t
Albany 0.039 0.032 1.200 0.232
Burlington -0.076 0.033 -2.330 0.020
Caribou 0.116 0.033 3.520 0.000
Concord 0.085 0.034 2.500 0.013
Hartford 0.036 0.032 1.120 0.262
Worcester -0.033 0.033 -1.010 0.314
Variable

snowdepth -0.009 0.003 -3.230 0.001
sqrtsndp 0.433 0.020 22.130 0.000
maxinrow -0.007 0.001 - -8.420 ~ 0.000
oldsnfl -0.047 0.003 -13.560 0.000
oldppt 0.307 0.030 10.260 0.000
rain on snow 0.070 0.021 3.320 0.001
r-squared = 0.688 RMSE =0.287 n=4259
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Table 5. Winter total grouping, showing station intercepts,
parameter estimates, rain on snow correction factor, and statistics,
including probability of a greater t-ratio. The model is for February data,
with corrections for December and January. As an example, the model for
Binghamton in January would be SqrtSWE = 0.038 - 0.013 * Snowdepth +
0.492 * Sqrtsndp - 0.008 * Maxinrow - 0.053 * Oldsnfl + 0.316 * Oldppt
-0.099. If rain had fallen on the day before the prediction, add 0.122.

Intercept Estimates  s.e.estimate t-ratio prof >t
Albany -0.001 0.015 -0.080 0.940
Binghamton 0.038 0.015 2.590 0.010
Boston -0.021 0.016 -1.320 0.188
Bridgeport -0.102 0.017 -5.880 0.000
Buffalo -0.009 0.015 -0.600 0.550
Burlington -0.087 0.015 -5.840 0.000
Caribou 0.087 0.015 5.940 0.000
Concord 0.071 0.015 4.710 0.000
Hartford -0.014 0.015 -0.900 0.367
LaGuardia-NYC -0.175 0.019 -9.060 0.000
Portland 0.088 0.015 5.970 0.000
Providence -0.043 0.016 -2.620 0.009
Rochester 0.062 0.015 4.210 0.000
Syracuse -0.074 0.015 -4.930 0.000
Worcester -0.103 0.015 -6.780 0.000
Variable

snowdept -0.013 0.001 -10.490 0.000
sqrtsndp 0.492 0.008 58.660 0.000
maxinrow -0.008 0.000 -19.350 0.000
oldsnfl -0.053 0.001 -37.300 0.000
oldppt 0.316 0.012 26.340 0.000
Correction for

December -0.201 0.005 -39.460 0.000
January -0.099 0.005 -21.520 0.000
rain on snow 0.122 0.010 12.790 0.000
r-squared = 0.721 RMSE =0.281 n=21176

MODEL VERIFICATION ON INDEPENDENT DATA

A) Data Preparation

The New York observers in the National Cooperative Observer Program take daily observations of maximum
--and minimum temperature, precipitation; snowfall;-and depth of the snowpack. These volunteers.also participate in.-
a periodic snow survey under the auspices of the Northeast Regional Climate Center. Beginning the first Monday in
January, and at 28 day intervals through February, followed by 14 day intervals into May, the observers determine

the SWE. Twenty-two stations (see figure 4 and table 6) with at least 20 years of data were chosen for verification

to ensure samples large enough for statistical analysis.
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Figure 4. Co-Op stations used in model verification.
See table 6 for key to Co-Op and NWSO station names.

Table 6. National Cooperative Observer stations with their years of snow survey data and National Weather Service
Offices in New York and Vermont used in verification studies. The identification numbers correspond to those in
figure 4.

Station Years of Record Station Years of Record
1. Addison 1948 - 1986 15. Grafton 1952 - 1984
2. Albany (NWSO) 16 La Guardia - New York City (NWSO)
3. Alfred 1938 - 1990 17. Liberty 1942 - 1990
4. Bainbridge 1938 - 1990 18. Little Falls 1937 - 1985
5. Bath 1954 - 1990 19. Mount Morris 1955 - 1986
6. Binghamton (NWSO) 20. Norwich 1938 - 1990
7. Burlington, Vermont (NWSO) 21.0ld Forge 1937 - 1990
8. Buffalo (NWSQ) 22.Rochester (NWSO)
9. Camden 1942 - 1986 23, Slide Mountain 1941 -.1990.
10. Chasm Falls 1939 - 1980 24 Stillwater Reservoir 1937 - 1990
11. Colden 1965 - 1990 25. Syracuse (NWSO)
12. Cooperstown 1941 - 1990 26. Tupper Lake - Sunmount 1937 - 1990
13. Cortland 1948 - 1990 27. Walton 1941 - 1980
14. Elmira 1947 - 1990 28. Wanakena 1937 - 1990
29, Warsaw 1955 - 1990
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Previous Day Prediction Day

&—— Oldsnfl, Oldppt —————>
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Figure 5. Co-Op station timing of observations

All observations at these stations are taken at the same time of day, usually in the morning. Oldsnfl and Oldppt
are for the 24 hours immediately preceding the SWE and snowdepth measurement. Therefore, there is no timelag as
is the case with the NWSO observations, and errors due to this source of lost information are eliminated. Figure 5
illustrates the timing of data collection at Co-Op sites. It should be compared with the discontinuity of data

collection at NWSO sites in figure 2.

B) Verification Results

For verification, Maxinrow was calculated for the Co-Op stations. Equations from geographically proximate
NWSOs (e.g.; Buffalo for Colden, Albany for Grafton) were used at each station. If the Co-Op site was between
NWSOs, verification was attempted with the equations for both stations, or, in the case of Old Forge, those for
Syracuse, Albany, and Burlington. When the grouped equations were tested, the intercept for the nearest NWSO
was used. Percentages of model described variation were calculated. RMSE was also determined, and standardized

residuals were plotted against snowdepth for each location to determine any bias or weakness in the models.

All stations in Western and Central New York exhibited no problems, indicating very good response to the
models. RMSEs were very similar to those of the exploratory data. Adirondack stations, however, exhibited
uniform underprediction with Burlington or Albany models. Investigation of January and February minimum
temperatures revealed more affinity between Adirondack stations and Caribou than with Albany or Burlington.
Applying the Caribou model to these Co-Op sites solved most of the problem. The beginning of a tendency toward
underprediction was only evident when the actual SWE exceeded 4 inches in January and 6 inches in February.

Table 7 shows the NWSO whose models best describe each Co-Op site, and corresponding R? and RMSE.
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~ Table 7. Co-Op stations and preferred NWSO models, with representative model described variation and RMSE.

Station

Addison
Alfred
Bainbridge
Bath
-Camden
Chasm Falls
Colden
Cooperstown
Cortland
Elmira
Grafton
Liberty
Little Falls
Mt. Morris
Norwich
Old Forge
Slide Mountain
Stillwater
Tupper Lake
Walton
Wanakena
Warsaw

January
preferred described RMSE
models variation
Buffalo 0.66 0.22
Buffalo 0.59 0.21
Binghamton 0.80 0.18
Buffalo 0.81 0.17
Syracuse 0.68 0.28
Caribou 0.74 0.20
Rochester 0.80 0.19
Syracuse 0.67 0.22
Syracuse 0.69 0.23
Binghamton 0.76 0.17
Caribou 0.78 0.19
Caribou 0.69 0.22
Caribou 0.73 0.16
(bad data) - -
Albany 0.33 0.28
Caribou 0.66 0.30
Caribou 0.74 0.31
Caribou 0.72 0.26
Caribou 0.73 0.20
Caribou 0.71 0.23
Caribou 0.70 0.23
Buffalo 0.78 0.24

preferred
models

Buffalo
Buffalo
Binghamton
Buffalo
Caribou
Caribou
Rochester
Syracuse
Syracuse
Binghamton
Caribou
Caribou
Caribou
Buffalo
Albany
Caribou
Binghamton
Caribou
Caribou
Caribou
Caribou
Rochester

Table §. Maxinrow correlated with mean snowpack density

Februarv
described RMSE
variation

0.55 0.27

0.56 0.28

0.79 0.21

0.47 0.23

0.69 0.40

0.80 0.23

0.76 0.33

0.66 0.27

0.79 0.24

0.67 0.23

0.90 0.13

0.78 0.19

0.76 0.21

0.59 0.26

0.79 0.22

0.43 0.38

0.73 0.42

0.53 0.33

0.61 0.32

0.77 0.22

0.67 0.36

0.79 0.18

Station December January February
Albany -0.438 -0.434 -0.257
Binghamton -0.269 -0.465 -0.408
Boston -0.475 -0.545 -0.316
Bridgeport -0.574 -0.494 -0.402
Buffalo -0.501 -0.393 -0.222
Burlington -0.494 -0.401 -0.418
Caribou -0.422 -0.461 -0.479
Concord -0.496 -0.304 -0.024
Hartford ; -0.554 -0.406 -0.495
LaGuardia NYC -0.448 -0.524 -0.238
Portland -0.384 -0.456 -0.311
Providence -0.403 -0.167 -0.396
Rochester -0.322 -0.403 -0.402
Syracuse -0.354 -0.318 -0.247
Worcester -0.437 -0.465 -0.295
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DISCUSSION

The physical role of the predictors is clear for all except Maxinrow. Whereas Snowdepth, Sqrtsndp, Oldsnfl,
and Oldppt are either components or related to components in the water balance of the snowpack, Maxinrow is
unusual. It is highly correlated with cumulétive freezing degree days (the running total of 32° F. - maximum
temperature, for consecutive days with the maximum temperature less than freezing). A consistent negative
correlation between Maxinrow and the mean density of the snowpack shows that lower mean snowpack density
occurs with larger values of Maxinrow. Table 8 illustrates this trend for the 15 NWSOs in the three winter months.
This holds whether the mean density is calculated over the time period equal to Maxinrow, or over the period of
measurable snowcover if less than Maxinrow. Although the correlations are not statistically significant, high mean
densities never occur with high values of Maxinrow. This points to Maxinrow as a weak guide to snowpack
ripeness. For most of the stations and months Maxinrow consistently serves to reduce the SWE. If Maxinrow
equals zero then the square root of SWE may be that of a ripe or nearly ripe snowpack. If Maxinrow is non-zero the
resulting water content is possibly being corrected for non-ripeness. Maxinrow may, therefore, also be describing a

component of the snowpack water balance.

The predictive role of Maxinrow was compared with that of the traditional degree-day term, Cummdd. When
Cummdd was substituted for Maxinrow, the models consistently showed lower R2 by as much as 4% and higher

RMSE. Thus Maxinrow appears to be at least a slight improvement as a predictor over the degree-day approach.

The range of R2 values for J anuary models is typical for all three winter months. Variation is probably in part
due to differences in station climatologies. Concord, for example, has the lowest R?2 and is influenced by warm,
moist coastal storms, colder systems moving up the Ohio Valley and across the Great Lakes, and cold Canadian
outbreaks. Caribou, being influenced primarily by the colder systems, may have less variation as a result. Another
explanation may be measurement technique (SWE determination by weighing, melting, or estimating) and possible

differences in accuracy as described by Schmidlin & Edgell, (1989). Further examination of this problem could lead
to model improvements and is recommended.

CONCLUSIONS

The results of these verification studies show that even the most general model is successful at describing more
than 70% of the variation in sqrtSWE. Since no knowledge of previous SWE is required for this approach, it
appears that this work successfully fills a gap in the data network by allowing daily cooperative observer data to be
used in calculating the SWE with reasonable accuracy. It is hoped that these equations will be used in the
Northeastern United States and adjacent Canadian provinces, and cautiously tested on other regions. The possible

upper limit of 4 inches of actual SWE in January and 6 inches in February before underprediction begins should be

noted when using the models for areas of deep snowcover.
The network of stations supplying snowmelt information in New York and New England can be expanded

from 15 NWSOs to over 500 sites at virtually no cost to prospective users, enabling these results to be readily

incorporated into systems requiring knowledge of SWE and snowmelt.
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